DOI QR코드

DOI QR Code

Effect of molecular weight of hyaluronic acid (HA) on viscoelasticity and particle texturing feel of HA dermal biphasic fillers

  • 투고 : 2016.07.08
  • 심사 : 2016.07.26
  • 발행 : 2016.12.01

초록

Background: Hyaluronic acid (HA) dermal biphasic fillers are synthesized for their efficacy in correcting aesthetic defects such as wrinkles, scars and facial contouring defects. The fillers consist of crosslinked HA microspheres suspended in a noncrosslinked HA. To extend the duration of HAs within the dermis and obtain the particle texturing feel, HAs are crosslinked to obtain the suitable mechanical properties. Results: Hyaluronic acid (HA) dermal biphasic fillers are prepared by mixing the crosslinked HA microspheres and the noncrosslinked HAs. The elastic modulus of the fillers increased with raising the volume fraction of the microspheres. The mechanical properties and the particle texturing feel of the fillers made from crosslinked HA (1058 kDa) microspheres suspended in noncrosslinked HA (1368 kDa) are successfully achieved, which are adequate for the fillers. Conclusions: Dermal biphasic HA fillers made from 1058 kDa exhibit suitable elastic moduli (211 to 420 Pa) and particle texturing feel (scale 7 ~ 9).

키워드

참고문헌

  1. Schante CE, Zuber G, Herlin C, Vandamme TF. Chemical modifications of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical applications. Carbohydr Polym. 2011;85:469-89. https://doi.org/10.1016/j.carbpol.2011.03.019
  2. Gatta AL, Schiraldi C, Papa A, Rosa MD. Comparative analysis of commercial deraml fillers based on crosslinked hyaluronan: physical characterization and in vitro enzymatic degradation. Polym Degrad Stab. 2011;96:630-6. https://doi.org/10.1016/j.polymdegradstab.2010.12.025
  3. Park KY, Kim HK, Kim BJ. Comparative study of hyaluronic acid fillers by in vitro and in vivo testing. J Euro Acad Dermatol Venereol. 2014;28:565-8. https://doi.org/10.1111/jdv.12135
  4. Flynn TC, Sarazin D, Bezzola A, Terrani C, Micheels P. Comparative histology of intradermal implantation of mono and biphasic hyaluronic acid fillers. Dermatol Surg. 2011;37:637-43. https://doi.org/10.1111/j.1524-4725.2010.01852.x
  5. Redbord KP, Busso M, Hanke CW. Soft-tissue augmentation with hyaluronica acid and calcium hydroxyl apatite fillers. Dermatol Ther. 2011;24:71-81. https://doi.org/10.1111/j.1529-8019.2010.01380.x
  6. Edsman K, Nord LI, Ohrlund A, Larkner H, Kenne AH. Gel properties of hyaluronic acid dermal fillers. Dermatol Surg. 2012;38:1170-9. https://doi.org/10.1111/j.1524-4725.2012.02472.x
  7. Kablik J, Monheit GD, Yu L, Chang G, Gershkovich J. Comparative physical properties of hyaluronic acid dermal fillers. Dermatol Surg. 2009;35:302-12. https://doi.org/10.1111/j.1524-4725.2008.01046.x
  8. Boulle KD, Glogau R, Kono T, Nathan M, Tezel A, Roca-Martinez J, Paliwal S, Stroumpoulis D. A review of the metabolism of 1,4-butanediol diglycidyl ether-crosslinked hyaluronic acid dermal fillers. Dermatol Surg. 2013;39: 1758-66. https://doi.org/10.1111/dsu.12301
  9. Fakhari A, Phan Q, Thakkar SV, Middaugh CR, Berkland C. Hyaluronic acid nanoparticles titrates the viscoelastic properties of viscosupplements. Langmuir. 2013;29:5123-31. https://doi.org/10.1021/la304575x
  10. Hu Z, Xia X, Tang L. Process for synthesizing oil and surfactant-free hyaluronic acid nanoparticles and microparticles, US patent, US 2006/ 0040892 A1, 2006.
  11. Fakhari A, Phan Q, Berkland C. Hyaluronic acid colloidal gels as selfassembling elastic biomaterials. J Biomed Mater Res Part B: Appl Biomater. 2014;102B:612-8.
  12. Lee DY, Cheon C, Son S, Kim Y, Kim J, Jang J, Kim S. Influence of molecular weight on swelling and elastic behavior of hyaluronic acid dermal fillers. Polym Korea. 2015;39:976-80. https://doi.org/10.7317/pk.2015.39.6.976
  13. Cheon C, Kim Y, Son S, Lee DY, Kim J, Kwon M, Kim Y, Kim S, Viscoelasticity of hyaluronic acid dermal fillers prepared by crosslinked HA microspheres. Polym. Korea. 2016;40;600-6. https://doi.org/10.7317/pk.2016.40.4.600
  14. Kim Y, Lee I, Kim J, Park J, Lee DY. Dependence of crosslinking temperature on swelling behavior of hyaluronic acid porous microbeads synthesized by a modified spray method. J Korean Ceram Soc. 2013;49:518-22.
  15. Kim J, Lee DY, Kim T, Lee M, Cho N. Biocompatibility of hyaluronic acid hydrogels prepared by porous hyaluronic acid microbeads. Met Mater Intl. 2014;20:555-63. https://doi.org/10.1007/s12540-014-3022-5
  16. Kim J, Choi J, Lee DY. Pyrogenicity of hyaluronic acid hydrogel crosslinked by divinyl sulfone for soft tissue augmentation. Nat Sci. 2010;2:764-8.
  17. Son S, Choi J, Cho H, Kang D, Lee DY. Synthesis and characterization of porous poly ($\varepsilon$-caprolactone)/silica nanocomposites. Polym Korea. 2015;39:323. https://doi.org/10.7317/pk.2015.39.2.323
  18. Kim J, Lee DY, Kim E, Jang J, Cho N. Tissue response to implants of hyaluronic acid hydrogel prepared by microbeads. Tissue Eng Regen Med. 2014;11:32-8.
  19. Kim J, Lee DY, Jang J, Kim T, Jang Y. Characterization of crosslinked hyaluronic acid microbeads by divinyl sulfone. J Biomed Eng Res. 2013;34:117-22. https://doi.org/10.9718/JBER.2013.34.3.117
  20. Kim J, Lee DY, Oh YS, Bang JW, Hyun C, Kim T, Choi JH, Swelling properties for crosslinking degree of hyaluronic acid hydrogels. Biomater. Res. 2103;17;37-40.
  21. Kim J, Lee DY, Kim Y, Lee I, Song Y. Effect of pH on swelling property of hyaluronic acid hydrogels for smart drug delivery system. J Sensor Sci Technol. 2012;21:256-62. https://doi.org/10.5369/JSST.2012.21.4.256
  22. Kim J, Lee DY, Choi JH. Implanting test of re-hydrated hydrogels by hyaluronic acid microbeads. Biomater Res. 2011;15:125-8.
  23. Kim J, Lee DY, Choi JH. Short term toxicity test of tissue augmentation materials by hyaluronic acid micro bead. Biomater Res. 2010;14:25-9.
  24. Choi C, Park JK, Kim WS, Jang MK, Nah JW. Preparation and characterization of deoxycholic acid-grafted hyaluronic acid as a drug carrier. Polym Korea. 2011;35:119-23. https://doi.org/10.7317/pk.2011.35.2.119
  25. Allemann I, Baumann L. Hyaluronic acid gel ($Juvederm^{TM}$) preparations in the treatment of facial wrinkles and folds. Clin Interv Aging. 2008;3:629-34. https://doi.org/10.2147/CIA.S3118
  26. Sundram H, Voigts B, Beer K, Meland M. Comparison of the rheological properties of viscosity and elasticity in two categories of soft tissue fillers: calcium hydroxyapatite and hyaluronic acid. Dermatol Surg. 2010;36: 1859-65. https://doi.org/10.1111/j.1524-4725.2010.01743.x

피인용 문헌

  1. Crosslinking method of hyaluronic-based hydrogel for biomedical applications vol.8, pp.None, 2017, https://doi.org/10.1177/2041731417726464
  2. Bioimaging of botulinum toxin and hyaluronate hydrogels using zwitterionic near-infrared fluorophores vol.21, pp.1, 2016, https://doi.org/10.1186/s40824-017-0102-x
  3. Formulation and Evaluation of Organogels Containing Hyaluronan Microparticles for Topical Delivery of Caffeine vol.19, pp.3, 2016, https://doi.org/10.1208/s12249-018-0955-x
  4. An Effective Translation: The Development of Hyaluronan-Based Medical Products From the Physicochemical, and Preclinical Aspects vol.6, pp.None, 2018, https://doi.org/10.3389/fbioe.2018.00062
  5. Mechanical properties and cytotoxicity of PLA/PCL films vol.8, pp.3, 2018, https://doi.org/10.1007/s13534-018-0065-4
  6. Fibrin-Genipin Hydrogel for Cartilage Tissue Engineering in Nasal Reconstruction vol.128, pp.7, 2019, https://doi.org/10.1177/0003489419836667
  7. Hyaluronic Acid Derivatives for Translational Medicines vol.20, pp.8, 2019, https://doi.org/10.1021/acs.biomac.9b00564
  8. In Situ Self-Cross-Linkable, Long-Term Stable Hyaluronic Acid Filler by Gallol Autoxidation for Tissue Augmentation and Wrinkle Correction vol.31, pp.23, 2019, https://doi.org/10.1021/acs.chemmater.9b02802
  9. Hyaluronic Acid Macromer Molecular Weight Dictates the Biophysical Properties and in Vitro Cellular Response to Semisynthetic Hydrogels vol.6, pp.2, 2016, https://doi.org/10.1021/acsbiomaterials.9b01419
  10. Dissolving microneedle with high molecular weight hyaluronic acid to improve skin wrinkles, dermal density and elasticity vol.42, pp.3, 2016, https://doi.org/10.1111/ics.12617
  11. Effect of sol–gel synthesis conditions on the physical properties of silica hydrogels vol.30, pp.6, 2016, https://doi.org/10.1016/j.mencom.2020.11.041
  12. Quantifying the Digestion of Cross-Linked Hyaluronic Acid Fillers With Hyaluronidase vol.47, pp.9, 2016, https://doi.org/10.1097/dss.0000000000003090
  13. 3D stem cell-laden artificial endometrium: successful endometrial regeneration and pregnancy vol.13, pp.4, 2016, https://doi.org/10.1088/1758-5090/ac165a
  14. Recent advancements in cellulose-based biomaterials for management of infected wounds vol.18, pp.11, 2016, https://doi.org/10.1080/17425247.2021.1989407
  15. Novel Tough and Transparent Ultra-Extensible Nanocomposite Elastomers Based on Poly(2-methoxyethylacrylate) and Their Switching between Plasto-Elasticity and Viscoelasticity vol.13, pp.23, 2016, https://doi.org/10.3390/polym13234254