DOI QR코드

DOI QR Code

Direct reprogramming and biomaterials for controlling cell fate

  • Kim, Eunsol (School of Materials Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Tae, Giyoong (School of Materials Science and Engineering, Gwangju Institute of Science and Technology)
  • 투고 : 2016.10.01
  • 심사 : 2016.11.26
  • 발행 : 2016.12.01

초록

Direct reprogramming which changes the fate of matured cell is a very useful technique with a great interest recently. This approach can eliminate the drawbacks of direct usage of stem cells and allow the patient specific treatment in regenerative medicine. Overexpression of diverse factors such as general reprogramming factors or lineage specific transcription factors can change the fate of already differentiated cells. On the other hand, biomaterials can provide physical and topographical cues or biochemical cues on cells, which can dictate or significantly affect the differentiation of stem cells. The role of biomaterials on direct reprogramming has not been elucidated much, but will be potentially significant to improve the efficiency or specificity of direct reprogramming. In this review, the strategies for general direct reprogramming and biomaterials-guided stem cell differentiation are summarized with the addition of the up-to-date progress on biomaterials for direct reprogramming.

키워드

과제정보

연구 과제 주관 기관 : National Research Foundation of Korea (NRF)

참고문헌

  1. Kim SU, de Vellis J. Stem cell-based cell therapy in neurological diseases: a review. J Neurosci Res. 2009;87:2183-200. https://doi.org/10.1002/jnr.22054
  2. Rippon HJ, Bishop AE. Embryonic stem cells. Cell Prolif. 2004;37:23-34. https://doi.org/10.1111/j.1365-2184.2004.00298.x
  3. Ramos-Zuniga R, Gonzalez-Perez O, Macias-Ornelas A, Capilla-Gonzalez V, Quinones-Hinojosa A. Ethical implications in the use of embryonic and adult neural stem cells. Stem Cells Int. 2012;2012:1-7.
  4. Lo B, Parham L. Ethical issues in stem cell research. Endocr Rev. 2009;30:204-13. https://doi.org/10.1210/er.2008-0031
  5. Gnecchi M, Zhang Z, Ni A, Dzau VJ. Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res. 2008;103:1204-19. https://doi.org/10.1161/CIRCRESAHA.108.176826
  6. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917-20. https://doi.org/10.1126/science.1151526
  7. Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007;448:313-7. https://doi.org/10.1038/nature05934
  8. Ben-David U, Benvenisty N. The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer. 2011;11:268-77. https://doi.org/10.1038/nrc3034
  9. Jung Y, Bauer G, Nolta JA. Concise review: induced pluripotent stem cellderived mesenchymal stem cells: progress toward safe clinical products. Stem Cells. 2012;30:42-7. https://doi.org/10.1002/stem.727
  10. Xu J, Du Y, Deng H. Direct lineage reprogramming: strategies, mechanisms, and applications. Cell Stem Cell. 2015;16:119-34. https://doi.org/10.1016/j.stem.2015.01.013
  11. Margariti A, Kelaini S, Cochrane A. Direct reprogramming of adult cells: avoiding the pluripotent state. Stem Cells Cloning Adv Appl. 2014;7:19.
  12. Kim J, Ambasudhan R, Ding S. Direct lineage reprogramming to neural cells. Curr Opin Neurobiol. 2012;22:778-84. https://doi.org/10.1016/j.conb.2012.05.001
  13. Kim J, Efe JA, Zhu S, Talantova M, Yuan X, Wang S, et al. Direct reprogramming of mouse fibroblasts to neural progenitors. Proc Natl Acad Sci. 2011;108:7838-43. https://doi.org/10.1073/pnas.1103113108
  14. Kim H-S, Kim J, Jo Y, Jeon D, Cho YS. Direct lineage reprogramming of mouse fibroblasts to functional midbrain dopaminergic neuronal progenitors. Stem Cell Res. 2014;12:60-8. https://doi.org/10.1016/j.scr.2013.09.007
  15. Yang N, Zuchero JB, Ahlenius H, Marro S, Ng YH, Vierbuchen T, et al. Generation of oligodendroglial cells by direct lineage conversion. Nat Biotechnol. 2013;31:434-9. https://doi.org/10.1038/nbt.2564
  16. Yoo AS, Sun AX, Li L, Shcheglovitov A, Portmann T, Li Y, et al. MicroRNAmediated conversion of human fibroblasts to neurons. Nature. 2011;476:228-31. https://doi.org/10.1038/nature10323
  17. Maucksch C, Firmin E, Butler-Munro C, Montgomery JM, Dottori M, Connor B. Non-viral generation of neural precursor-like cells from adult human fibroblasts. J Stem Cells Regen Med. 2012;8:162-70.
  18. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M. Direct conversion of fibroblasts to functional neurons by defined factors. Nature. 2010;463:1035-41. https://doi.org/10.1038/nature08797
  19. Adler AF, Grigsby CL, Kulangara K, Wang H, Yasuda R, Leong KW. Nonviral direct conversion of primary mouse embryonic fibroblasts to neuronal cells. Mol Ther Nucleic Acids. 2012;1:e32. https://doi.org/10.1038/mtna.2012.25
  20. Kulangara K, Adler AF, Wang H, Chellappan M, Hammett E, Yasuda R, et al. The effect of substrate topography on direct reprogramming of fibroblasts to induced neurons. Biomaterials. 2014;35:5327-36. https://doi.org/10.1016/j.biomaterials.2014.03.034
  21. Marro S, Pang ZP, Yang N, Tsai M-C, Qu K, Chang HY, et al. Direct lineage conversion of terminally differentiated hepatocytes to functional neurons. Cell Stem Cell. 2011;9:374-82. https://doi.org/10.1016/j.stem.2011.09.002
  22. Son EY, Ichida JK, Wainger BJ, Toma JS, Rafuse VF, Woolf CJ, et al. Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell. 2011;9:205-18. https://doi.org/10.1016/j.stem.2011.07.014
  23. Caiazzo M, Dell'Anno MT, Dvoretskova E, Lazarevic D, Taverna S, Leo D, et al. Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature. 2011;476:224-7. https://doi.org/10.1038/nature10284
  24. Pang ZP, Yang N, Vierbuchen T, Ostermeier A, Fuentes DR, Yang TQ, et al. Induction of human neuronal cells by defined transcription factors. Nature. 2011;476:220-23. https://doi.org/10.1038/nature10202
  25. Ambasudhan R, Talantova M, Coleman R, Yuan X, Zhu S, Lipton SA, et al. Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions. Cell Stem Cell. 2011;9:113-8. https://doi.org/10.1016/j.stem.2011.07.002
  26. Liu X, Li F, Stubblefield EA, Blanchard B, Richards TL, Larson GA, et al. Direct reprogramming of human fibroblasts into dopaminergic neuron-like cells. Cell Res. 2012;22:321-32. https://doi.org/10.1038/cr.2011.181
  27. Dantas AP, Jimenez-Altayo F, Vila E. Vascular aging: facts and factors. Front Physiol. 2012;3:325.
  28. Macia E, Boyden PA. Stem cell therapy is proarrhythmic. Circulation. 2009;119:1814-23. https://doi.org/10.1161/CIRCULATIONAHA.108.779900
  29. Snider P, Standley KN, Wang J, Azhar M, Doetschman T, Conway SJ. Origin of cardiac fibroblasts and the role of periostin. Circ Res. 2009;105:934-47. https://doi.org/10.1161/CIRCRESAHA.109.201400
  30. Ieda M, Fu J-D, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell. 2010;142:375-86. https://doi.org/10.1016/j.cell.2010.07.002
  31. Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L, et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature. 2012;485:593-8. https://doi.org/10.1038/nature11044
  32. Song K, Nam Y-J, Luo X, Qi X, Tan W, Huang GN, et al. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature. 2012;485:599-604. https://doi.org/10.1038/nature11139
  33. Takeuchi JK, Bruneau BG. Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors. Nature. 2009;459:708-11. https://doi.org/10.1038/nature08039
  34. Efe JA, Hilcove S, Kim J, Zhou H, Ouyang K, Wang G, et al. Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nat Cell Biol. 2011;13:215-22. https://doi.org/10.1038/ncb2164
  35. Jayawardena TM, Egemnazarov B, Finch EA, Zhang L, Payne JA, Pandya K, et al. MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ Res. 2012;110:1465-73. https://doi.org/10.1161/CIRCRESAHA.112.269035
  36. Fu J-D, Stone NR, Liu L, Spencer CI, Qian L, Hayashi Y, et al. Direct reprogramming of human fibroblasts toward a cardiomyocyte-like state. Stem Cell Rep. 2013;1:235-47. https://doi.org/10.1016/j.stemcr.2013.07.005
  37. Nam Y-J, Song K, Luo X, Daniel E, Lambeth K, West K, et al. Reprogramming of human fibroblasts toward a cardiac fate. Proc Natl Acad Sci. 2013;110:5588-93. https://doi.org/10.1073/pnas.1301019110
  38. Vierbuchen T, Wernig M. Direct lineage conversions: unnatural but useful? Nat Biotechnol. 2011;29:892-907. https://doi.org/10.1038/nbt.1946
  39. Hengstler JG, Brulport M, Schormann W, Bauer A, Hermes M, Nussler AK, et al. Generation of human hepatocytes by stem cell technology: definition of the hepatocyte. Expert Opin Drug Metab Toxicol. 2005;1:61-74. https://doi.org/10.1517/17425255.1.1.61
  40. Sekiya S, Suzuki A. Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Nature. 2011;475:390-3. https://doi.org/10.1038/nature10263
  41. Huang P, He Z, Ji S, Sun H, Xiang D, Liu C, et al. Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature. 2011;475:386-9. https://doi.org/10.1038/nature10116
  42. Huang P, Zhang L, Gao Y, He Z, Yao D, Wu Z, et al. Direct reprogramming of human fibroblasts to functional and expandable hepatocytes. Cell Stem Cell. 2014;14:370-84. https://doi.org/10.1016/j.stem.2014.01.003
  43. Zhu S, Rezvani M, Harbell J, Mattis AN, Wolfe AR, Benet LZ, et al. Mouse liver repopulation with hepatocytes generated from human fibroblasts. Nature. 2014;508:93-7. https://doi.org/10.1038/nature13020
  44. Castell JV, Jover R, Martnez-Jimnez CP, Gmez-Lechn MJ. Hepatocyte cell lines: their use, scope and limitations in drug metabolism studies. Expert Opin Drug Metab Toxicol. 2006;2:183-212. https://doi.org/10.1517/17425255.2.2.183
  45. Langer R, Tirrell DA. Designing materials for biology and medicine. Nature. 2004;428:487-92. https://doi.org/10.1038/nature02388
  46. Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B: Biointerfaces. 2010;75:1-18. https://doi.org/10.1016/j.colsurfb.2009.09.001
  47. Martino S, D'Angelo F, Armentano I, Kenny JM, Orlacchio A. Stem cellbiomaterial interactions for regenerative medicine. Biotechnol Adv. 2012;30:338-51. https://doi.org/10.1016/j.biotechadv.2011.06.015
  48. Jopling C, Boue S, Belmonte JCI. Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nat Rev Mol Cell Biol. 2011;12:79-89. https://doi.org/10.1038/nrm3043
  49. Guilak F, Cohen DM, Estes BT, Gimble JM, Liedtke W, Chen CS. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell. 2009;5:17-26. https://doi.org/10.1016/j.stem.2009.06.016
  50. Gibson MC, Patel AB, Nagpal R, Perrimon N. The emergence of geometric order in proliferating metazoan epithelia. Nature. 2006;442:1038-41. https://doi.org/10.1038/nature05014
  51. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677-89. https://doi.org/10.1016/j.cell.2006.06.044
  52. Discher DE, Mooney DJ, Zandstra PW. Growth factors, matrices, and forces combine and control stem cells. Science. 2009;324:1673-7. https://doi.org/10.1126/science.1171643
  53. Engler AJ, Sweeney HL, Discher DE, Schwarzbauer JE. Extracellular matrix elasticity directs stem cell differentiation. J Musculoskelet Neuronal Interact. 2007;7:335.
  54. Choi B, Park K-S, Kim J-H, Ko K-W, Kim J-S, Han DK, et al. Stiffness of hydrogels regulates cellular reprogramming efficiency through mesenchymal-to-epithelial transition and stemness markers: stiffness of hydrogels regulates cellular reprogramming efficiency. Macromol Biosci. 2016;16:199-206. https://doi.org/10.1002/mabi.201500273
  55. Christopherson GT, Song H, Mao H-Q. The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation. Biomaterials. 2009;30:556-64. https://doi.org/10.1016/j.biomaterials.2008.10.004
  56. Lim SH, Mao H-Q. Electrospun scaffolds for stem cell engineering. Adv Drug Deliv Rev. 2009;61:1084-96. https://doi.org/10.1016/j.addr.2009.07.011
  57. Levenberg S, Huang NF, Lavik E, Rogers AB, Itskovitz-Eldor J, Langer R. Differentiation of human embryonic stem cells on three-dimensional polymer scaffolds. Proc Natl Acad Sci. 2003;100:12741-6. https://doi.org/10.1073/pnas.1735463100
  58. Sapir Y, Kryukov O, Cohen S. Integration of multiple cell-matrix interactions into alginate scaffolds for promoting cardiac tissue regeneration. Biomaterials. 2011;32:1838-47. https://doi.org/10.1016/j.biomaterials.2010.11.008
  59. McNamara LE, McMurray RJ, Biggs MJP, Kantawong F, Oreffo ROC, Dalby MJ. Nanotopographical control of stem cell differentiation. J Tissue Eng. 2010;1:120623. https://doi.org/10.4061/2010/120623
  60. D'angelo F, Armentano I, Mattioli S, Crispoltoni L, Tiribuzi R, Cerulli GG, et al. Micropatterned hydrogenated amorphous carbon guides mesenchymal stem cells towards neuronal differentiation. Eur Cell Mater. 2010;20:231-44. https://doi.org/10.22203/eCM.v020a19
  61. Ruiz SA, Chen CS. Emergence of patterned stem cell differentiation within multicellular structures. Stem Cells. 2008;26:2921-7. https://doi.org/10.1634/stemcells.2008-0432
  62. Yim EKF, Darling EM, Kulangara K, Guilak F, Leong KW. Nanotopographyinduced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells. Biomaterials. 2010;31:1299-306. https://doi.org/10.1016/j.biomaterials.2009.10.037
  63. Yim EK, Pang SW, Leong KW. Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. Exp Cell Res. 2007; 313:1820-9. https://doi.org/10.1016/j.yexcr.2007.02.031
  64. Chen Y-C, Lee D-C, Tsai T-Y, Hsiao C-Y, Liu J-W, Kao C-Y, et al. Induction and regulation of differentiation in neural stem cells on ultra-nanocrystalline diamond films. Biomaterials. 2010;31:5575-87. https://doi.org/10.1016/j.biomaterials.2010.03.061
  65. Biel M, Wascholowski V, Giannis A. Epigenetics-an epicenter of gene regulation: histones and histone-modifying enzymes. Angew Chem Int Ed. 2005;44:3186-216. https://doi.org/10.1002/anie.200461346
  66. Frey MT, Tsai IY, Russell TP, Hanks SK, Wang Y. Cellular responses to substrate topography: role of myosin II and focal adhesion kinase. Biophys J. 2006;90:3774-82. https://doi.org/10.1529/biophysj.105.074526
  67. Andersson A-S, Backhed F, von Euler A, Richter-Dahlfors A, Sutherland D, Kasemo B. Nanoscale features influence epithelial cell morphology and cytokine production. Biomaterials. 2003;24:3427-36. https://doi.org/10.1016/S0142-9612(03)00208-4
  68. Downing TL, Soto J, Morez C, Houssin T, Fritz A, Yuan F, et al. Biophysical regulation of epigenetic state and cell reprogramming. Nat Mater. 2013;12:1154-62. https://doi.org/10.1038/nmat3777
  69. Sia J, Yu P, Srivastava D, Li S. Effect of biophysical cues on reprogramming to cardiomyocytes. Biomaterials. 2016;103:1-11. https://doi.org/10.1016/j.biomaterials.2016.06.034
  70. Yoo J, Noh M, Kim H, Jeon NL, Kim B-S, Kim J. Nanogrooved substrate promotes direct lineage reprogramming of fibroblasts to functional induced dopaminergic neurons. Biomaterials. 2015;45:36-45. https://doi.org/10.1016/j.biomaterials.2014.12.049
  71. Fu K, Griebenow K, Hsieh L, Klibanov AM, Langera R. FTIR characterization of the secondary structure of proteins encapsulated within PLGA microspheres. J Controlled Release. 1999;58:357-66. https://doi.org/10.1016/S0168-3659(98)00192-8
  72. Moribe K, Nomizu N, Izukura S, Yamamoto K, Tozuka Y, Sakurai M, et al. Physicochemical, morphological and therapeutic evaluation of agarose hydrogel particles as a reservoir for basic fibroblast growth factor. Pharm Dev Technol. 2008;13:541-7. https://doi.org/10.1080/10837450802309661
  73. Bratt-Leal AM, Carpenedo RL, Ungrin MD, Zandstra PW, McDevitt TC. Incorporation of biomaterials in multicellular aggregates modulates pluripotent stem cell differentiation. Biomaterials. 2011;32:48-56. https://doi.org/10.1016/j.biomaterials.2010.08.113
  74. Dickinson LE, Kusuma S, Gerecht S. Reconstructing the differentiation niche of embryonic stem cells using biomaterials. Macromol Biosci. 2011;11:36-49. https://doi.org/10.1002/mabi.201000245
  75. Ma W, Fitzgerald W, Liu Q-Y, O'Shaughnessy TJ, Maric D, Lin HJ, et al. CNS stem and progenitor cell differentiation into functional neuronal circuits in three-dimensional collagen gels. Exp Neurol. 2004;190:276-88. https://doi.org/10.1016/j.expneurol.2003.10.016
  76. Battista S, Guarnieri D, Borselli C, Zeppetelli S, Borzacchiello A, Mayol L, et al. The effect of matrix composition of 3D constructs on embryonic stem cell differentiation. Biomaterials. 2005;26:6194-207. https://doi.org/10.1016/j.biomaterials.2005.04.003
  77. Ji H, Atchison L, Chen Z, Chakraborty S, Jung Y, Truskey GA, et al. Transdifferentiation of human endothelial progenitors into smooth muscle cells. Biomaterials. 2016;85:180-94. https://doi.org/10.1016/j.biomaterials.2016.01.066
  78. Donzelli E, Salvade A, Mimo P, Vigano M, Morrone M, Papagna R, et al. Mesenchymal stem cells cultured on a collagen scaffold: In vitro osteogenic differentiation. Arch Oral Biol. 2007;52:64-73. https://doi.org/10.1016/j.archoralbio.2006.07.007
  79. Willerth SM, Arendas KJ, Gottlieb DI, Sakiyama-Elbert SE. Optimization of fibrin scaffolds for differentiation of murine embryonic stem cells into neural lineage cells. Biomaterials. 2006;27:5990-6003. https://doi.org/10.1016/j.biomaterials.2006.07.036
  80. Liu H, Collins SF, Suggs LJ. Three-dimensional culture for expansion and differentiation of mouse embryonic stem cells. Biomaterials. 2006;27:6004-14. https://doi.org/10.1016/j.biomaterials.2006.06.016
  81. Lin C-C, Anseth KS. PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm Res. 2009;26:631-43. https://doi.org/10.1007/s11095-008-9801-2
  82. Smith AW, Hoyne JD, Nguyen PK, McCreedy DA, Aly H, Efimov IR, et al. Direct reprogramming of mouse fibroblasts to cardiomyocyte-like cells using Yamanaka factors on engineered poly(ethylene glycol) (PEG) hydrogels. Biomaterials. 2013;34:6559-71. https://doi.org/10.1016/j.biomaterials.2013.05.050
  83. Ingram DA. Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood. 2004;104:2752-60. https://doi.org/10.1182/blood-2004-04-1396
  84. Peters EB, Christoforou N, Leong KW, Truskey GA, West JL. Poly(ethylene glycol) hydrogel scaffolds containing cell-adhesive and protease-sensitive peptides support microvessel formation by endothelial progenitor cells. Cell Mol Bioeng. 2016;9:38-54. https://doi.org/10.1007/s12195-015-0423-6
  85. Kilian KA, Mrksich M. Directing stem cell fate by controlling the affinity and density of ligand-receptor interactions at the biomaterials interface. Angew Chem. 2012;124:4975-9. https://doi.org/10.1002/ange.201108746
  86. Wichterle H, Lieberam I, Porter JA, Jessell TM. Directed differentiation of embryonic stem cells into motor neurons. Cell. 2002;110:385-97. https://doi.org/10.1016/S0092-8674(02)00835-8
  87. Schuldiner M, Yanuka O, Itskovitz-Eldor J, Melton DA, Benvenisty N. Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc Natl Acad Sci. 2000;97:11307-12. https://doi.org/10.1073/pnas.97.21.11307
  88. Willerth SM, Faxel TE, Gottlieb DI, Sakiyama-Elbert SE. The effects of soluble growth factors on embryonic stem cell differentiation inside of fibrin scaffolds. Stem Cells. 2007;25:2235-44. https://doi.org/10.1634/stemcells.2007-0111
  89. Beckstead BL, Santosa DM, Giachelli CM. Mimicking cell-cell interactions at the biomaterial-cell interface for control of stem cell differentiation. J Biomed Mater Res A. 2006;79A:94-103. https://doi.org/10.1002/jbm.a.30760
  90. Tung JC, Paige SL, Ratner BD, Murry CE, Giachelli CM. Engineered biomaterials control differentiation and proliferation of human-embryonic-stem-cell-derived cardiomyocytes via timed notch activation. Stem Cell Rep. 2014;2:271-81. https://doi.org/10.1016/j.stemcr.2014.01.011
  91. Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science. 2013;341:651-4. https://doi.org/10.1126/science.1239278
  92. Li X, Zuo X, Jing J, Ma Y, Wang J, Liu D, et al. Small-molecule-driven direct reprogramming of mouse fibroblasts into functional neurons. Cell Stem Cell. 2015;17:195-203. https://doi.org/10.1016/j.stem.2015.06.003
  93. Cao N, Huang Y, Zheng J, Spencer CI, Zhang Y, Fu J-D, et al. Conversion of human fibroblasts into functional cardiomyocytes by small molecules. Science. 2016;352:1216-20. https://doi.org/10.1126/science.aaf1502
  94. Jain G, Ford AJ, Rajagopalan P. Opposing rigidity-protein gradients reverse fibroblast durotaxis. ACS Biomater Sci Eng. 2015;1:621-31. https://doi.org/10.1021/acsbiomaterials.5b00229
  95. Wen JH, Vincent LG, Fuhrmann A, Choi YS, Hribar KC, Taylor-Weiner H, et al. Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nat Mater. 2014;13:979-87. https://doi.org/10.1038/nmat4051
  96. Yeh P-H, Sun J-S, Wu H-C, Hwang L-H, Wang T-W. Stimuli-responsive HA-PEI nanoparticles encapsulating endostatin plasmid for stem cell gene therapy. RSC Adv. 2013;3:12922. https://doi.org/10.1039/c3ra40880a
  97. Zhao X, Li Z, Pan H, Liu W, Lv M, Leung F, et al. Enhanced gene delivery by chitosan-disulfide-conjugated LMW-PEI for facilitating osteogenic differentiation. Acta Biomater. 2013;9:6694-703. https://doi.org/10.1016/j.actbio.2013.01.039
  98. Pickard MR, Barraud P, Chari DM. The transfection of multipotent neural precursor/stem cell transplant populations with magnetic nanoparticles. Biomaterials. 2011;32:2274-84. https://doi.org/10.1016/j.biomaterials.2010.12.007
  99. Gallego-Perez D, Otero JJ, Czeisler C, Ma J, Ortiz C, Gygli P, et al. Deterministic transfection drives efficient nonviral reprogramming and uncovers reprogramming barriers. Nanomedicine Nanotechnol Biol Med. 2016;12:399-409. https://doi.org/10.1016/j.nano.2015.11.015
  100. Boukany PE, Morss A, Liao W, Henslee B, Jung H, Zhang X, et al. Nanochannel electroporation delivers precise amounts of biomolecules into living cells. Nat Nanotechnol. 2011;6:747-54. https://doi.org/10.1038/nnano.2011.164
  101. Gao K, Li L, He L, Hinkle K, Wu Y, Ma J, et al. Design of a microchannelnanochannel- microchannel array based nanoelectroporation system for precise gene transfection. Small. 2014;10:1015-23. https://doi.org/10.1002/smll.201300116
  102. Kim D, Kim C-H, Moon J-I, Chung Y-G, Chang M-Y, Han B-S, et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell. 2009;4:472-6. https://doi.org/10.1016/j.stem.2009.05.005
  103. Qutachi O, Shakesheff KM, Buttery LDK. Delivery of definable number of drug or growth factor loaded poly(dl-lactic acid-co-glycolic acid) microparticles within human embryonic stem cell derived aggregates. J Controlled Release. 2013;168:18-27. https://doi.org/10.1016/j.jconrel.2013.02.029
  104. Bian L, Zhai DY, Tous E, Rai R, Mauck RL, Burdick JA. Enhanced MSC chondrogenesis following delivery of TGF-${\beta}3$ from alginate microspheres within hyaluronic acid hydrogels in vitro and in vivo. Biomaterials. 2011;32:6425-34. https://doi.org/10.1016/j.biomaterials.2011.05.033
  105. Tseng T-C, Hsieh F-Y, Dai N-T, Hsu S. Substrate-mediated reprogramming of human fibroblasts into neural crest stem-like cells and their applications in neural repair. Biomaterials. 2016;102:148-61. https://doi.org/10.1016/j.biomaterials.2016.06.020
  106. Su G, Zhao Y, Wei J, Xiao Z, Chen B, Han J, et al. Direct conversion of fibroblasts into neural progenitor-like cells by forced growth into 3D spheres on low attachment surfaces. Biomaterials. 2013;34:5897-906. https://doi.org/10.1016/j.biomaterials.2013.04.040
  107. Mirakhori F, Zeynali B, Rassouli H, Shahbazi E, Hashemizadeh S, Kiani S, et al. Induction of neural progenitor-like cells from human fibroblasts via a genetic material-free approach. PLoS One. 2015;10:e0135479. https://doi.org/10.1371/journal.pone.0135479
  108. Seifinejad A, Tabebordbar M, Baharvand H, Boyer LA, Hosseini Salekdeh G. Progress and promise towards safe induced pluripotent stem cells for therapy. Stem Cell Rev Rep. 2010;6:297-306. https://doi.org/10.1007/s12015-010-9121-x

피인용 문헌

  1. Highly Efficient Intracellular Protein Delivery by Cationic Polyethyleneimine-Modified Gelatin Nanoparticles vol.11, pp.2, 2016, https://doi.org/10.3390/ma11020301
  2. Reprogramming cell fate with artificial transcription factors vol.592, pp.6, 2016, https://doi.org/10.1002/1873-3468.12993
  3. The Role of Stiffness in Cell Reprogramming: A Potential Role for Biomaterials in Inducing Tissue Regeneration vol.8, pp.9, 2016, https://doi.org/10.3390/cells8091036
  4. Integrating Biomaterials and Genome Editing Approaches to Advance Biomedical Science vol.23, pp.1, 2021, https://doi.org/10.1146/annurev-bioeng-122019-121602
  5. Fundamental Biomaterial Considerations in the Development of a 3D Model Representative of Primary Open Angle Glaucoma vol.8, pp.11, 2016, https://doi.org/10.3390/bioengineering8110147