DOI QR코드

DOI QR Code

Cellulose membrane as a biomaterial: from hydrolysis to depolymerization with electron beam

  • Eo, Mi Young (Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Fan, Huan (Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Cho, Yun Ju (Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Kim, Soung Min (Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Lee, Suk Keun (Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University)
  • Received : 2016.03.04
  • Accepted : 2016.06.02
  • Published : 2016.12.01

Abstract

The cellulose membrane (CM) is a major component of plant cell walls and is both a chemically and mechanically stable synthetic polymer with many applications for use in tissue engineering. However, due to its dissolution difficulty, there are no known physiologically relevant or pharmaceutically clinical applications for this polymer. Thus, research is underway on controlled and adjusted forms of cellulose depolymerization. To advance the study of applying CM for tissue engineering, we have suggested new possibilities for electron beam (E-beam) treatment of CM. Treatment of CM with an E-beam can modify physical, chemical, molecular and biological properties, so it can be studied continuously to improve its usefulness and to enhance value. We review clinical applications of CM, cellulose binding domains, cellulose crosslinking proteins, conventional hydrolysis of cellulose, and depolymerization with radiation and focus our experiences with depolymerization of E-beam irradiated CM in this article.

Keywords

Acknowledgement

Supported by : Ministry of Health & Welfare

References

  1. Kim SM, Fan H, Cho YJ, Eo MY, Park JH, Kim BN, et al. Electron beam effect on biomaterials I; focusing on bone graft materials. Biomaterials Research. 2015;19:10. https://doi.org/10.1186/s40824-015-0031-5
  2. Kim SM, Eo MY, Kang JY, Myoung H, Choi EK, Lee SK, et al. Bony regeneration effect of electron-beam irradiated hydroxyapatite and tricalcium phosphate mixtures with 7 to 3 ratio in the calvarial defect model of rat. Tissue Engineering Regenerative Medicine. 2013;9:24-32.
  3. Park JM, Kim SM, Kim MK, Park YW, Myoung H, Lee BC, et al. Effect of electron-beam irradiation on the artificial bone substitutes composed of hydroxyapatite and tricalcium phosphate mixtures with type I collagen. J Korean Assoc Maxillofac Plast Reconstr Surg. 2013;35:38-50.
  4. Laurell B, Foll E. Electron-beam accelerators for new applications. RadTech Europe 2011 Exhibition & Conference for Radiation Curing. Electron Crosslinking AB. 2011.
  5. Kim SM, Lee JH, Jo JA, Lee SC, Lee SK. Development of a bioactive cellulose membrane from sea squirt skin for bone regeneration-a preliminary research. J Kor Oral Maxillofac Surg. 2005;31:440-53.
  6. Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, et al. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials. 2005;26:419-31. https://doi.org/10.1016/j.biomaterials.2004.02.049
  7. Sokolnicki A, Fisher R, Harrah T, Kaplan D. Permeability of bacterial cellulose membranes. J Membrane Science. 2006;272:15-27. https://doi.org/10.1016/j.memsci.2005.06.065
  8. Lee JH, Brown Jr RM, Kuga S, Shoda S, Kobayashi S. Assembly of synthetic cellulose I. PNAS. 1994;91:7425-9. https://doi.org/10.1073/pnas.91.16.7425
  9. Kim SM, Sep BM, Lee JH, Choung PH, Lee SK. Clinical application and development of guided bone regenerative membrane research. Tissue Engineering and Regenerative Medicine. 2008;5:959-73.
  10. Kim SM, Park JM, Kang TY, Kim YS, Lee SK. Purification of squirt cellulose membrane from the cystic tunic of Styela clava and identification of its osteoconductive effect. Cellulose. 2013;20:655-73. https://doi.org/10.1007/s10570-012-9851-9
  11. Kim SM, Woo KM, Song N, Eo MY, Cho HJ, Park JH, et al. Electron beam irradiation to the Styela clava derived cellulose membrane. Polymer. 2015;39:1-9.
  12. Kokorevics A, Gravitis J. Cellulose depolymerization to glucose and other water soluble polysaccharides by shear deformation and high pressure treatment. Glycononj J. 1997;14:669-76. https://doi.org/10.1023/A:1018557114493
  13. Chundawat SP, Bellesia G, Uppugundla N, da Costa SL, Gao D, Cheh AM, et al. Restucturing the crystalline cellulose hydrogen bond network enhances its depolymerization rate. J Am Chem Soc. 2011;133:11163-74. https://doi.org/10.1021/ja2011115
  14. Bouchard J, Methot M, Jordan B. The effects of ionizing radiation on the cellulose of wood free paper. Cellulose. 2006;13:601-10. https://doi.org/10.1007/s10570-005-9033-0
  15. Bastidas JC, Venditti R, Pawlak J, Gilbert R, Zauscher S, Kadla JF. Chemical force microscopy of cellulosic fibers. Carbohydr Polym. 2005;62:369-78. https://doi.org/10.1016/j.carbpol.2005.08.058
  16. Dourado F, Mota M, Pala H, Gama FM. Effect of cellulase adsorption on the surface and interfacial properties of cellulose. Cellulose. 1999;6:265-82. https://doi.org/10.1023/A:1009251722598
  17. Kimura S, Kondo T. Recent progress in cellulose biosynthesis. J Plant Res. 2002;115:297-302. https://doi.org/10.1007/s10265-002-0037-7
  18. Jiang B, Wu Z, Zhao H, Tang F, Lu J, Wei Q, et al. Electron beam irradiation modification of collagen membrane. Biomaterials. 2006;27:15-23. https://doi.org/10.1016/j.biomaterials.2005.05.091
  19. Henniges U, Okubayashi U, Rosenau T, Potthast A. Irradiation of cellulosic pulps: understanding its impact on cellulose oxidation. Biomacromolecules. 2012;13:4171-8. https://doi.org/10.1021/bm3014457
  20. Dahlin C, Linde A, Gottlow J, Nyman S. Healing of bone defects by guided tissue regeneration. Plast Reconstr Surg. 1988;81:672-6. https://doi.org/10.1097/00006534-198805000-00004
  21. Dahlin C, Sennerby L, Lekholm U, Linde A, Nyman S. Generation of new bone around titanium implants using a membrane technique: an experimental study in rabbits. Int J Oral Maxillofac Implants. 1989;4:19-25.
  22. Kim SM, Eo MY, Park JM, Myoung H, Lee JH, Park YI, et al. Basic structure and composition analysis of sea squirt originated cellulose membrane. Tissue Engineering and Regenerative Medicine. 2010;7:191-201.
  23. Xu CX, Jin H, Chung YS, Shin JY, Woo MA, Lee KH, et al. Chondroitin sulfate extracted from the Styela clava tunic suppresses TNF-a-induced expression of inflammatory factors, VCAM-1 and iNOS by blocking Akt/NF-jB signal in JB6 cellsacrophage-mediated biodegradation of poly(DL-lactide-coglycolide) in vitro. Cancer Lett. 2008;264:93-100. https://doi.org/10.1016/j.canlet.2008.01.022
  24. Park JS, Lee JH, Han CS, Chung DW, Kim GY. Effect of hyaluronic acidcarboxymethylcellulose solution on perineural scar formation after sciatic nerve repair in rats. Clin Orthop Surg. 2011;3:315-2. https://doi.org/10.4055/cios.2011.3.4.315
  25. Sahoo SK, Behera A, Patil SV, Panda SK. Formulation, in vitro drug release study and anticancer activity of 5-fluorouracil loaded gellan gum microbeads. Acta Pol Pharm. 2013;70:123-7.
  26. Park CH, Jeong L, Cho D, Kwon OH, Park WH. Effect of methylcellulose on the formation and drug release behavior of silk fibroin hydrogel. Carbohydr Polym. 2013;98:1179-85. https://doi.org/10.1016/j.carbpol.2013.07.028
  27. Reid ML, Brown MB, Moss GP, Jones SA. An investigation into solventmembrane interactions when assessing drug release from organic vehicles using regenerated cellulose membranes. J Pharm Pharmacol. 2008;60:1139-47. https://doi.org/10.1211/jpp.60.9.0004
  28. Wu C, Murtaza G, Yameen MA, Aamir MN, Akhtar M, Zhao Y. Permeation study through bacterial cellulose membrane. Acta Pol Pharm. 2014;71:297-300.
  29. Dewan M, Bhowmick B, Sarkar G, Rana D, Bain MK, Bhowmik M, et al. Effect of methyl cellulose on gelation behavior and drug release from poloxamer based ophthalmic formulations. Int J Biol Macromol. 2015;72:706-10. https://doi.org/10.1016/j.ijbiomac.2014.09.021
  30. Thombre AG, Cardinal JR, DeNoto AR, Herbig SM, Smith KL. Asymmetric membrane capsules for osmotic drug delivery: I. Development of a manufacturing process. J Control Release. 1999;57:55-64. https://doi.org/10.1016/S0168-3659(98)00100-X
  31. Frisbee SE, Mehta K, McGinity J. Processing factors that influence the in vitro and in vivo performance of film-coated drug delivery systems. Drug Deliv. 2002;2:72-6.
  32. Digenis GA, Gold TB, Shah VP. Cross-linking of gelatin capsules and its relevance to their in vitro-in vivo performance. J Pharm Sci. 1994;83:915-21. https://doi.org/10.1002/jps.2600830702
  33. Bussemer T, Bodmeier R. Formulation parameters affecting the performance of coated gelatin capsules with pulsatile release profiles. Int J Pharm. 2003; 267:59-68. https://doi.org/10.1016/j.ijpharm.2003.07.008
  34. Dahl TC, Sue IL, Yum A. The effect of pancreatin on the dissolution performance of gelatin-coated tablets exposed to high-humidity conditions. Pharm Res. 1991;8:412-4. https://doi.org/10.1023/A:1015822421802
  35. Pina ME, Sousa AT. Application of hydroalcoholic solutions of formaldehyde in preparation of acetylsalicylic acid gastro-resistant capsules. Drug Dev Ind Pharm. 2002;28:443-9. https://doi.org/10.1081/DDC-120003005
  36. Serafica G, Mormino R, Bungay H. Inclusion of solid particles in bacterial cellulose. Appl Microbiol Biotechnol. 2002;58:756-60. https://doi.org/10.1007/s00253-002-0978-8
  37. Fernandes JMB, Gil MH, Castro JAAM. Hornification-its origin and interpretation in wood pulps. Wood Sci Technol. 2004;37:489-94. https://doi.org/10.1007/s00226-003-0216-2
  38. Spence KL, Venditti RA, Habibi Y, Rojas OJ, Pawlak JJ. The effect of chemical composition on microfibrillar cellulose films from wood pulps: mechanical processing and physical properties. Bioresour Technol. 2010;101:5961-8. https://doi.org/10.1016/j.biortech.2010.02.104
  39. Devasahayam S, Hill DJT, Connell JW. Effect of electron beam radiolysis on mechanical properties of high performance polyimides. A comparative study of transparent polymer films. High Performance Polymers. 2005;17: 547-59. https://doi.org/10.1177/0954008305051662
  40. Linder M, Nevanen T, Soderholm L, Bengs O, Teeri TT. Improved immobilization of fusion proteins via cellulose-binding domains. Biotechnol Bioeng. 1998;60:642-7. https://doi.org/10.1002/(SICI)1097-0290(19981205)60:5<642::AID-BIT15>3.0.CO;2-8
  41. Bolam DN, Xie H, Pell G, Hogg D, Galbraith G, Henrissat B, et al. X4 modules represent a new family of carbohydrate-binding modules that display novel properties. J Biol Chem. 2004;28:22953-63.
  42. Levy I, Shoseyov O. Cellulose-binding domains: biotechnological applications. Biotechnol Adv. 2002;20:191-213. https://doi.org/10.1016/S0734-9750(02)00006-X
  43. Linder M, Salovuori I, Ruohonen L, Teeri TT. Characterization of a double cellulose-binding domain. Synergistic high affinity binding to crystalline cellulose. J Biol Chem. 1996;271:21268-72. https://doi.org/10.1074/jbc.271.35.21268
  44. Linder M, Mattinen ML, Kontteli M, Lindeberg G, Stahlberg J, Drakenberg T, et al. Identification of functionally important amino acids in the cellulosebinding domain of Trichoderma reesei cellobiohydrolae I. Protein Sci. 1995; 4:1056-64. https://doi.org/10.1002/pro.5560040604
  45. Reinikainen T, Ruohonen L, Nevanen T, Laaksonen L, Kraulis P, Jones TA, et al. Investigation of the function of mutated cellulose-binding domains of Trichoderma reesei cellobiohydrase I. Proteins. 1992;14:475-82. https://doi.org/10.1002/prot.340140408
  46. Brun E, Johnson PE, Creagh AL, Tomme P, Webster P, Haynes CA, et al. Structure and binding specificity of the second N-terminal cellulose-binding domain from Cellulomonas fimi endoglucanase C. Biochemistry. 2000;39:2445-58. https://doi.org/10.1021/bi992079u
  47. Jervis EJ, Haynes CA, Kilburn DG. Surface diffusion of cellulases and their isolated binding domains on cellulose. J Biol Chem. 1997;272:24016-23. https://doi.org/10.1074/jbc.272.38.24016
  48. Shoseyov O, Shani Z, Levy I. Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev. 2006;70:283-95. https://doi.org/10.1128/MMBR.00028-05
  49. Wang AA, Mulchandani A, Chen W. Whole-cell immonilization using cell surface-exposed cellulose-binding domain. Biotechnol Prog. 2001;17:407-11. https://doi.org/10.1021/bp0100225
  50. Degani O, Gepstein S, Dosoretz CG. A new method for measuring scouring efficiency of natural fibers based on the cellulose-binding domain-betaglucuronidase fused protein. J Biotechnol. 2004;107:265-73. https://doi.org/10.1016/j.jbiotec.2003.10.015
  51. Ibrahim NA, Amr A, Eid BM, Mohamed ZE, Fahmy HM. Poly(acrylic acid)/poly(ethylene glycol) adduct for attaining multifunctional cellulosic fabrics. Carbohydr Polym. 2012;89:648-60. https://doi.org/10.1016/j.carbpol.2012.03.068
  52. Emerson RW, Crandall BG. Method for decontamination of a liquid of gaseous environment. US patent. 1998;5:843-375.
  53. Fuglsang CC, Tsuchiya R. Cellulose binding domains (CBDs) for oral care products. US patent. 2001;6:264,925.
  54. Battista OA. Hydrolysis and crystallization of cellulose. Ind Eng Chem. 1950; 42:502-7. https://doi.org/10.1021/ie50483a029
  55. Imamura R, Ueno T, Murakami K. Depolymerization of cellulose by electron beam irradiation. Bull Inst Chem Res Kyoto Univ. 1972;50:51-63.
  56. Delmer DP. Cellulose biosynthesis: exciting times for a difficult field of study. Annu Rev Plant Physiol Plant Mol Biol. 1999;50:245-76. https://doi.org/10.1146/annurev.arplant.50.1.245
  57. Raeder U, Broda P. Comparison of the lignin-degrading white rot fungi Phanerochaete chrysosporium and Sporotrichum pulverulentum at the DNA level. Curr Genet. 1984;8:499-506. https://doi.org/10.1007/BF00410436
  58. Highley TL, Kirk TK, Ibach R. Effect of brown-rot fungi on cellulose. Biodeterioration Resear. 1989;2:511-25.
  59. Green IIIF, Highley TL. Mechanism of brown-rot decay: paradigm or paradox. Int Biodeterior Biodegradation. 1997;39:113-24. https://doi.org/10.1016/S0964-8305(96)00063-7
  60. Malek MA, Chowdhury NA, Matsuhashi S, Hashimoto S, Kume T. Radiation and fermentation treatment of cellulosic wastes. Mycoscience. 1994;35:95-8. https://doi.org/10.1007/BF02268535
  61. Matsuhashi S, Kume T, Hashimoto S, Awang MR. Effect of gamma irradiation on enzymatic digestion of oil palm empty fruit bunch. J Sci Food Agric. 1995;69:265-7. https://doi.org/10.1002/jsfa.2740690218
  62. Laguardia L, Vassallo E, Cappitelli E, Mesto E, Cremona A, Sorlini C, et al. Investigation of the effects of plasma treatments on biodeteriorated ancient paper. Appl Surf Sci. 2005;252:1159-66. https://doi.org/10.1016/j.apsusc.2005.02.045
  63. Mironi-Harpaz I, Wang DY, Venkatraman S, Seliktar D. Photopolymerization of cell-encapsulating hydrogels: crosslinking efficiency versus cytotoxicity. Acta Biomater. 2013;8:1838-48.
  64. Singh B, Pal L. Radiation crosslinking polymerization of sterculia polysaccharide-PVA-PVP for making hydrogel wound dressings. Int J Biol Macromol. 2011;48:501-10. https://doi.org/10.1016/j.ijbiomac.2011.01.013
  65. Johansson LS, Campbell JM, Fardim P, Anette H, Boisvert J, Ernstsson M. An XPS round robin investigation on analysis of wood pulp fibres and filter paper. Surf Sci. 2005;584:126-32. https://doi.org/10.1016/j.susc.2005.01.062
  66. Bora U, Sharma P, Kannan K, Nahar P. Photoreactive cellulose membrane-a novel matrix for covalent immobilization of biomolecules. J Biotechnol. 2006;126:220-9. https://doi.org/10.1016/j.jbiotec.2006.04.013

Cited by

  1. The Efficacy of Electron Beam Irradiated Bacterial Cellulose Membranes as Compared with Collagen Membranes on Guided Bone Regeneration in Peri-Implant Bone Defects vol.10, pp.9, 2017, https://doi.org/10.3390/ma10091018
  2. Preparation and Characterization of Resorbable Bacterial Cellulose Membranes Treated by Electron Beam Irradiation for Guided Bone Regeneration vol.18, pp.11, 2017, https://doi.org/10.3390/ijms18112236
  3. Ion-Induced Nanopatterning of Bacterial Cellulose Hydrogels for Biosensing and Anti-Biofouling Interfaces vol.3, pp.7, 2020, https://doi.org/10.1021/acsanm.0c01151
  4. Spectroscopic and thermal analyses for the effect of acetic acid on the plasticized sodium carboxymethyl cellulose vol.1224, pp.None, 2016, https://doi.org/10.1016/j.molstruc.2020.129013
  5. Comparative hydrolysis analysis of cellulose samples and aspects of its application in conservation science vol.28, pp.13, 2016, https://doi.org/10.1007/s10570-021-04048-6