Acknowledgement
Supported by : National Research Foundation of Korea (NRF), Korea Health Industry Development Institute (KHIDI)
References
- O'brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today. 2011;14:88-95. https://doi.org/10.1016/S1369-7021(11)70058-X
- Hardy JG, Lee JY, Schmidt CE. Biomimetic conducting polymer-based tissue scaffolds. Curr Opin Biotechnol. 2013;24:847-54. https://doi.org/10.1016/j.copbio.2013.03.011
- Balint R, Cassidy NJ, Cartmell SH. Conductive polymers: Towards a smart biomaterial for tissue engineering. Acta Biomater. 2014;10:2341-53. https://doi.org/10.1016/j.actbio.2014.02.015
- Pires F, Ferreira Q, Rodrigues CA, Morgado J, Ferreira FC. Neural stem cell differentiation by electrical stimulation using a cross-linked PEDOT substrate: expanding the use of biocompatible conjugated conductive polymers for neural tissue engineering. Biochim Biophys Acta BBA-Gen Subj. 2015;1850: 1158-68. https://doi.org/10.1016/j.bbagen.2015.01.020
- Green RA, Baek S, Poole-Warren LA, Martens PJ. Conducting polymerhydrogels for medical electrode applications. Sci Technol Adv Mater. 2016.
- Guimard NK, Gomez N, Schmidt CE. Conducting polymers in biomedical engineering. Prog Polym Sci. 2007;32:876-921. https://doi.org/10.1016/j.progpolymsci.2007.05.012
- Bendrea A-D, Cianga L, Cianga I. Review paper: progress in the field of conducting polymers for tissue engineering applications. J Biomater Appl. 2011;26:3-84. https://doi.org/10.1177/0885328211402704
- Guiseppi-Elie A. Electroconductive hydrogels: Synthesis, characterization and biomedical applications. Biomaterials. 2010;31:2701-16. https://doi.org/10.1016/j.biomaterials.2009.12.052
- Qu B, Chen C, Qian L, Xiao H, He B. Facile preparation of conductive composite hydrogels based on sodium alginate and graphite. Mater Lett. 2014;137:106-9. https://doi.org/10.1016/j.matlet.2014.08.137
- Peng R, Yu Y, Chen S, Yang Y, Tang Y. Conductive nanocomposite hydrogels with self-healing property. RSC Adv. 2014;4:35149-55. https://doi.org/10.1039/C4RA05381H
- Guarino V, Alvarez-Perez MA, Borriello A, Napolitano T, Ambrosio L. Conductive PANi/PEGDA macroporous hydrogels for nerve regeneration. Adv Healthc Mater. 2013;2:218-27. https://doi.org/10.1002/adhm.201200152
- Kim D, Abidian M, Martin DC. Conducting polymers grown in hydrogel scaffolds coated on neural prosthetic devices. J Biomed Mater Res A. 2004; 71:577-85.
- Thrivikraman G, Madras G, Basu B. Intermittent electrical stimuli for guidance of human mesenchymal stem cell lineage commitment towards neural-like cells on electroconductive substrates. Biomaterials. 2014;35:6219-35. https://doi.org/10.1016/j.biomaterials.2014.04.018
- Collins MN, Birkinshaw C. Hyaluronic acid based scaffolds for tissue engineering-A review. Carbohydr Polym. 2013;92:1262-79. https://doi.org/10.1016/j.carbpol.2012.10.028
- Prestwich GD. Hyaluronic acid-based clinical biomaterials derived for cell and molecule delivery in regenerative medicine. J Controlled Release. 2011; 155:193-9. https://doi.org/10.1016/j.jconrel.2011.04.007
- Segura T, Anderson BC, Chung PH, Webber RE, Shull KR, Shea LD. Crosslinked hyaluronic acid hydrogels: a strategy to functionalize and pattern. Biomaterials. 2005;26:359-71. https://doi.org/10.1016/j.biomaterials.2004.02.067
- Kogan G, Soltes L, Stern R, Gemeiner P. Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol Lett. 2007;29:17-25.
- Yoo HS, Lee EA, Yoon JJ, Park TG. Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering. Biomaterials. 2005;26:1925-33. https://doi.org/10.1016/j.biomaterials.2004.06.021
- Solis MA, Chen Y-H, Wong TY, Bittencourt VZ, Lin Y-C, Huang LL. Hyaluronan regulates cell behavior: a potential niche matrix for stem cells. Biochem Res Int. 2012;2012.
- Zhu H, Mitsuhashi N, Klein A, Barsky LW, Weinberg K, Barr ML, et al. The role of the hyaluronan receptor CD44 in mesenchymal stem cell migration in the extracellular matrix. Stem Cells. 2006;24:928-35. https://doi.org/10.1634/stemcells.2005-0186
- Miyake K, Underhill CB, Lesley J, Kincade PW. Hyaluronate can function as a cell adhesion molecule and CD44 participates in hyaluronate recognition. J Exp Med. 1990;172:69-75. https://doi.org/10.1084/jem.172.1.69
- Lei Y, Gojgini S, Lam J, Segura T. The spreading, migration and proliferation of mouse mesenchymal stem cells cultured inside hyaluronic acid hydrogels. Biomaterials. 2011;32:39-47. https://doi.org/10.1016/j.biomaterials.2010.08.103
- Ateh D, Navsaria H, Vadgama P. Polypyrrole-based conducting polymers and interactions with biological tissues. J R Soc Interface. 2006;3:741-52. https://doi.org/10.1098/rsif.2006.0141
- Stewart E, Kobayashi NR, Higgins MJ, Quigley AF, Jamali S, Moulton SE, et al. Electrical stimulation using conductive polymer polypyrrole promotes differentiation of human neural stem cells: a biocompatible platform for translational neural tissue engineering. Tissue Eng Part C Methods. 2014;21: 385-93.
- Ahuja T, Mir IA, Kumar D. Biomolecular immobilization on conducting polymers for biosensing applications. Biomaterials. 2007;28:791-805. https://doi.org/10.1016/j.biomaterials.2006.09.046
- Shi Z, Gao H, Feng J, Ding B, Cao X, Kuga S, et al. In situ synthesis of robust conductive cellulose/polypyrrole composite aerogels and their potential application in nerve regeneration. Angew Chem Int Ed. 2014;53:5380-4. https://doi.org/10.1002/anie.201402751
- Abu-Rabeah K, Polyak B, Ionescu RE, Cosnier S, Marks RS. Synthesis and characterization of a pyrrole-alginate conjugate and its application in a biosensor construction. Biomacromolecules. 2005;6:3313-8. https://doi.org/10.1021/bm050339j
- Hur J, Im K, Kim SW, Kim J, Chung D-Y, Kim T-H, et al. Polypyrrole/agarosebased electronically conductive and reversibly restorable hydrogel. ACS Nano. 2014;8:10066-76. https://doi.org/10.1021/nn502704g
Cited by
- Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment vol.117, pp.20, 2017, https://doi.org/10.1021/acs.chemrev.7b00094
- Cyclic cryogelation: a novel approach to control the distribution of carbonized cellulose fibres within polymer hydrogels vol.25, pp.1, 2016, https://doi.org/10.1007/s10570-017-1544-y
- Incorporation of Conductive Materials into Hydrogels for Tissue Engineering Applications vol.10, pp.10, 2016, https://doi.org/10.3390/polym10101078
- Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation vol.3, pp.1, 2019, https://doi.org/10.1038/s41551-018-0335-6
- Hyaluronic acid promotes proliferation and migration of human meniscus cells via a CD44-dependent mechanism vol.60, pp.2, 2016, https://doi.org/10.1080/03008207.2018.1465053
- Three-Dimensional Printing and Injectable Conductive Hydrogels for Tissue Engineering Application vol.25, pp.5, 2016, https://doi.org/10.1089/ten.teb.2019.0100
- Selenophene and Thiophene-Based Conjugated Polymer Gels vol.2, pp.None, 2020, https://doi.org/10.1021/acsmaterialslett.0c00406
- Ionic Diffusion and Drug Release Behavior of Core-Shell-Functionalized Alginate-Chitosan-Based Hydrogel vol.5, pp.1, 2016, https://doi.org/10.1021/acsomega.9b03464
- Facilitated Transdermal Drug Delivery Using Nanocarriers-Embedded Electroconductive Hydrogel Coupled with Reverse Electrodialysis-Driven Iontophoresis vol.14, pp.4, 2020, https://doi.org/10.1021/acsnano.0c00007
- Polypyrrole-Incorporated Conducting Constructs for Tissue Engineering Applications: A Review vol.2, pp.2, 2020, https://doi.org/10.1089/bioe.2020.0010
- Design Strategies of Conductive Hydrogel for Biomedical Applications vol.25, pp.22, 2016, https://doi.org/10.3390/molecules25225296
- Stimuli‐Responsive Biomaterials: Scaffolds for Stem Cell Control vol.10, pp.1, 2021, https://doi.org/10.1002/adhm.202001125
- Novel pH-tunable nontoxic hydrogels of pyrrole-2-carboxylic acid and ethylenediamine derivatives: synthesis and characterization vol.60, pp.3, 2016, https://doi.org/10.1080/25740881.2020.1793200
- Endogenous Electric Signaling as a Blueprint for Conductive Materials in Tissue Engineering vol.3, pp.1, 2021, https://doi.org/10.1089/bioe.2020.0027
- 3D Photothermal Cryogels for Solar-Driven Desalination vol.13, pp.26, 2021, https://doi.org/10.1021/acsami.1c05087
- Programmable Assembly of π‐Conjugated Polymers vol.33, pp.46, 2016, https://doi.org/10.1002/adma.202006287
- Conductive Polymeric-Based Electroactive Scaffolds for Tissue Engineering Applications: Current Progress and Challenges from Biomaterials and Manufacturing Perspectives vol.22, pp.21, 2016, https://doi.org/10.3390/ijms222111543
- Conductive Bioimprint Using Soft Lithography Technique Based on PEDOT:PSS for Biosensing vol.8, pp.12, 2016, https://doi.org/10.3390/bioengineering8120204