과제정보
연구 과제 주관 기관 : Korea Institute of Science and technology (KIST)
참고문헌
- Terranova VP, Deflorio R, Lyall R, Hic S, Friesel R, Maciag T. Human endothelial cells are chemotactic to endothelial cell growth factor and heparin. J Cell Biol. 1985;101:2330-4. https://doi.org/10.1083/jcb.101.6.2330
- Li L, Jiang J. Regulatory factors of mesenchymal stem cell migration into injured tissues and their signal transduction mechanisms. Front Med. 2011;5:33-9. https://doi.org/10.1007/s11684-011-0114-1
- Chen Y, Xiang LX, Shao JZ, Pan RL, Wang YX, Dong XJ, et al. Recruitment of endogenous bone marrow mesenchymal stem cells towards injured liver. J Cell Mol Med. 2010;14:1494-508.
- Wang Z, Wang Y, Wang Z, Gutkind JS, Wang Z, Wang F, et al. Engineered mesenchymal stem cells with enhanced tropism and paracrine secretion of cytokines and growth factors to treat traumatic brain injury. Stem Cells. 2015;33:456-67. https://doi.org/10.1002/stem.1878
- Sohni A, Verfaillie CM. Mesenchymal stem cells migration homing and tracking. Stem Cells Int. 2013;2013:130763.
- Chamberlain G, Fox J, Ashton B, Middleton J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells. 2007;25:2739-49. https://doi.org/10.1634/stemcells.2007-0197
- Ries C, Egea V, Karow M, Kolb H, Jochum M, Neth P. MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by inflammatory cytokines. Blood. 2007;109:4055-63. https://doi.org/10.1182/blood-2006-10-051060
- Krause DS. Plasticity of marrow-derrived stem cells. Gene Ther. 2002;9:754-8. https://doi.org/10.1038/sj.gt.3301760
- Marquez-Curtis LA, Janowska-Wieczorek A. Enhancing the migration ability of mesenchymal stromal cells by targeting the SDF-1/CXCR4 axis. Biomed Res Int. 2013;2013:561098.
- Cencioni C, Capogrossi MC, Napolitano M. The SDF-1/CXCR4 axis in stem cell preconditioning. Cardiovasc Res. 2012;94:400-7. https://doi.org/10.1093/cvr/cvs132
- Breslin S, O'Driscoll L. Three-dimensional cell culture: the missing link in drug discovery. Drug Discov Today. 2013;18:240-9. https://doi.org/10.1016/j.drudis.2012.10.003
- Tsui JH, Lee W, Pun SH, Kim J, Kim DH. Microfluidics-assisted in vitro drug screening and carrier production. Adv Drug Deliver Rev. 2013;65:1575-88. https://doi.org/10.1016/j.addr.2013.07.004
- Titmarsh DM, Chen HY, Glass NR, Cooper-White JJ. Concise review: microfluidic technology platforms: poised to accelerate development and translation of stem cell-derived therapies. Stem Cell Transl Med. 2014;3:81-90. https://doi.org/10.5966/sctm.2013-0118
- Young EWK, Beebe DJ. Fundamentals of microfluidic cell culture in controlled microenvironments. Chem Soc Rev. 2010;39:1036-48. https://doi.org/10.1039/b909900j
- Xu H, Heilshorn SC. Microfluidic investigation of BDNF-enhanced neural stem cell chemotaxis in CXCL12 gradients. Small. 2013;9:585-95. https://doi.org/10.1002/smll.201202208
- Han S, Yang K, Shin Y, Lee JS, Kamm RD, Chung S, et al. Three-dimensional extracellular matrix-mediated neural stem cell differentiation in a microfluidic device. Lab Chip. 2012;12:2305-8. https://doi.org/10.1039/c2lc21285d
- Boneschansker L, Yan J, Wong E, Briscoe DM, Irimia D. Microfluidic platform for the quantitative analysis of leukocyte migration signatures. Nat Commun. 2014;5:4787-98. https://doi.org/10.1038/ncomms5787
-
Kim BJ, Hannanta-Anan P, Chau M, Kim YS, Swartz MA, Wu M. Cooperative roles of SDF-
$1{\alpha}$ and EGF gradients on tumor cell migration revealed by a robust 3D microfluidic model. PLoS One. 2013;8, e68422. https://doi.org/10.1371/journal.pone.0068422 - Keenan TM, Folch A. Biomolecular gradients in cell culture systems. Lab Chip. 2008;8:34-57. https://doi.org/10.1039/B711887B
- Chung S, Sudo R, Mack PJ, Wan C-R, Vickerman V, Kamm RD. Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Lab Chip. 2009;9:269-75. https://doi.org/10.1039/B807585A
- Liu X, Duan B, Cheng Z, Jia X, Mao L, Fu H, et al. SDF-1/CXCR4 axis modulates bone marrow mesenchymal stem cell apoptosis, migration and cytokine secretion. Protein Cell. 2011;2:845-54. https://doi.org/10.1007/s13238-011-1097-z
- Liang-kuan B, Nan Z, Cheng L, Fu-Ding L, Tian-Xin L, Xu-Jun X, et al. Kidney cancer cells secrete IL-8 to activate Akt and promote migration of mesenchymal stem cells. Urol Oncol. 2014;32:607-12. https://doi.org/10.1016/j.urolonc.2013.10.018
- Hong HS, Lee J, Lee E, Kwon YS, Lee E, Ahn W, et al. A new role of substance P as an injury-inducible messenger for mobilization of CD29(+) stromal-like cells. Nat Med. 2009;15:425-35. https://doi.org/10.1038/nm.1909
- Fujita S, Ohshima M, Iwata H. Time-lapse observation of cell alignment on nanogrooved patterns. J R Soc Interface. 2009;6:S269-77. https://doi.org/10.1098/rsif.2008.0428.focus
- Ferreira MM, Dewi RE, Heilshorn SC. Microfluidic analysis of extracellular matrix-bFGF crosstalk on primary human myoblast chemoproliferation, chemokinesis, and chemotaxis. Integr Biol. 2015;7:569-79. https://doi.org/10.1039/C5IB00060B
- Wang L, Li Y, Chen X, Chen J, Gautam SC, Xu Y, et al. MCP-1, MIP-1, IL-8 and ischemic cerebral tissue enhance human bone marrow stromal cell migration in interface culture. Hematol. 2002;7:113-7. https://doi.org/10.1080/10245330290028588
- Kalwitz G, Endres M, Neumann K, Skriner K, Ringe J, Sezer O, et al. Gene expression profile of adult human bone marrow-derived mesenchymal stem cells stimulated by the chemokine CXCL7. Int J Biochem Cell B. 2009;41:649-58. https://doi.org/10.1016/j.biocel.2008.07.011
- Ponte AL, Marais E, Gallay N, Langonne A, Delorme B, Herault O, et al. The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells. 2007;25:1737-45. https://doi.org/10.1634/stemcells.2007-0054
- Cao J, Wang L, Du ZJ, Liu P, Zhang YB, Sui JF, et al. Recruitment of exogenous mesenchymal stem cells in mandibular distraction osteogenesis by the stromal cell-derived factor-1/chemokine receptor-4 pathway in rats. Brit J Oral Max Surg. 2013;51:937-41. https://doi.org/10.1016/j.bjoms.2013.05.003
피인용 문헌
- 3D Bone Biomimetic Scaffolds for Basic and Translational Studies with Mesenchymal Stem Cells vol.19, pp.10, 2016, https://doi.org/10.3390/ijms19103150
- Two-dimensional material-based bionano platforms to control mesenchymal stem cell differentiation vol.22, pp.1, 2016, https://doi.org/10.1186/s40824-018-0120-3
- Soluble matrix protein is a potent modulator of mesenchymal stem cell performance vol.116, pp.6, 2019, https://doi.org/10.1073/pnas.1812951116
- Design criteria and standardization of a microfluidic cell culture system for investigating cellular migration vol.29, pp.4, 2019, https://doi.org/10.1088/1361-6439/ab0796
- An Overview of In Vitro , In Vivo , and Computational Techniques for Cancer-Associated Angiogenesis Studies vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/8857428
- Surface Patterning of Hydrogel Biomaterials to Probe and Direct Cell-Matrix Interactions vol.7, pp.21, 2020, https://doi.org/10.1002/admi.202001198
- Additive manufacturing pertaining to bone: Hopes, reality and future challenges for clinical applications vol.121, pp.None, 2016, https://doi.org/10.1016/j.actbio.2020.11.039
- Designing Hydrogel-Based Bone-On-Chips for Personalized Medicine vol.11, pp.10, 2016, https://doi.org/10.3390/app11104495
- Feasibility of allogeneic mesenchymal stem cells in pediatric hypoxic-ischemic encephalopathy: Phase I study vol.13, pp.5, 2021, https://doi.org/10.4252/wjsc.v13.i5.470
- Social motility of biofilm-like microcolonies in a gliding bacterium vol.12, pp.1, 2016, https://doi.org/10.1038/s41467-021-25408-7