과제정보
연구 과제 주관 기관 : NIH
참고문헌
- Bosma GC, Custer RP, Bosma MJ. A severe combined immunodeficiency mutation in the mouse. Nature. 1983;301(5900):527-30. https://doi.org/10.1038/301527a0
- Shultz LD, Ishikawa F, Greiner DL. Humanized mice in translational biomedical research. Nat Rev Immunol. 2007;7(2):118-30. https://doi.org/10.1038/nri2017
- Ito M et al. NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood. 2002;100(9):3175-82. https://doi.org/10.1182/blood-2001-12-0207
- Legrand N et al. Humanized mice for modeling human infectious disease: challenges, progress, and outlook. Cell Host Microbe. 2009;6(1):5-9. https://doi.org/10.1016/j.chom.2009.06.006
- Morton CL, Houghton PJ. Establishment of human tumor xenografts in immunodeficient mice. Nat Protoc. 2007;2(2):247-50. https://doi.org/10.1038/nprot.2007.25
- Quintana E et al. Efficient tumour formation by single human melanoma cells. Nature. 2008;456(7222):593-8. https://doi.org/10.1038/nature07567
- McCune JM et al. The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science. 1988;241(4873):1632-9. https://doi.org/10.1126/science.2971269
- Traggiai E et al. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science. 2004;304(5667):104-7. https://doi.org/10.1126/science.1093933
- Doulatov S et al. Hematopoiesis: a human perspective. Cell Stem Cell. 2012;10(2):120-36. https://doi.org/10.1016/j.stem.2012.01.006
- Shultz LD et al. Humanized mice for immune system investigation: progress, promise and challenges. Nat Rev Immunol. 2012;12(11):786-98. https://doi.org/10.1038/nri3311
- Dao MA, Pepper KA, Nolta JA. Long-term cytokine production from engineered primary human stromal cells influences human hematopoiesis in an in vivo xenograft model. Stem Cells. 1997;15(6):443-54. https://doi.org/10.1002/stem.150443
- Lapidot T et al. Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice. Science. 1992;255(5048):1137-41. https://doi.org/10.1126/science.1372131
- O'Connell RM et al. Lentiviral vector delivery of human interleukin-7 (hIL-7) to human immune system (HIS) mice expands T lymphocyte populations. PLoS One. 2010;5(8):e12009. https://doi.org/10.1371/journal.pone.0012009
- Chen Q, Khoury M, Chen J. Expression of human cytokines dramatically improves reconstitution of specific human-blood lineage cells in humanized mice. Proc Natl Acad Sci U S A. 2009;106(51):21783-8. https://doi.org/10.1073/pnas.0912274106
- Covassin L et al. Human peripheral blood CD4 T cell-engrafted non-obese diabetic-scid IL2rgamma(null) H2-Ab1 (tm1Gru) Tg (human leucocyte antigen D-related 4) mice: a mouse model of human allogeneic graft-versus-host disease. Clin Exp Immunol. 2011;166(2):269-80. https://doi.org/10.1111/j.1365-2249.2011.04462.x
- Billerbeck E et al. Development of human CD4+FoxP3+ regulatory T cells in human stem cell factor-, granulocyte-macrophage colony-stimulating factor-, and interleukin-3-expressing NOD-SCID IL2Rgamma(null) humanized mice. Blood. 2011;117(11):3076-86. https://doi.org/10.1182/blood-2010-08-301507
- Muguruma Y et al. Reconstitution of the functional human hematopoietic microenvironment derived from human mesenchymal stem cells in the murine bone marrow compartment. Blood. 2006;107(5):1878-87. https://doi.org/10.1182/blood-2005-06-2211
- Melkus MW et al. Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nat Med. 2006;12(11):1316-22. https://doi.org/10.1038/nm1431
- Parekkadan B et al. Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure. PLoS One. 2007;2(9):e941. https://doi.org/10.1371/journal.pone.0000941
- Lee J et al. Implantable microenvironments to attract hematopoietic stem/cancer cells. Proc Natl Acad Sci U S A. 2012;109(48):19638-43. https://doi.org/10.1073/pnas.1208384109
- Bersani F et al. Bioengineered implantable scaffolds as a tool to study stromalderived factors in metastatic cancer models. Cancer Res. 2014;74(24):7229-38. https://doi.org/10.1158/0008-5472.CAN-14-1809
- Adams GB, Scadden DT. The hematopoietic stem cell in its place. Nat Immunol. 2006;7(4):333-7. https://doi.org/10.1038/ni1331
- Wilson A, Trumpp A. Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol. 2006;6(2):93-106. https://doi.org/10.1038/nri1779
- Zhang CC, Lodish HF. Cytokines regulating hematopoietic stem cell function. Curr Opin Hematol. 2008;15(4):307-11. https://doi.org/10.1097/MOH.0b013e3283007db5
- Lapidot T, Kollet O. The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immunedeficient NOD/SCID and NOD/SCID/B2m(null) mice. Leukemia. 2002;16(10):1992-2003. https://doi.org/10.1038/sj.leu.2402684
- Lataillade JJ et al. Stromal cell-derived factor 1 regulates primitive hematopoiesis by suppressing apoptosis and by promoting G(0)/G(1) transition in CD34(+) cells: evidence for an autocrine/paracrine mechanism. Blood. 2002;99(4):1117-29. https://doi.org/10.1182/blood.V99.4.1117
- Peled A et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science. 1999;283(5403):845-8. https://doi.org/10.1126/science.283.5403.845
- Stellos K et al. Platelet-derived stromal cell-derived factor-1 regulates adhesion and promotes differentiation of human CD34+ cells to endothelial progenitor cells. Circulation. 2008;117(2):206-15. https://doi.org/10.1161/CIRCULATIONAHA.107.714691
- Ricks DM et al. Optimized lentiviral transduction of mouse bone marrowderived mesenchymal stem cells. Stem Cells Dev. 2008;17(3):441-50. https://doi.org/10.1089/scd.2007.0194
- Zhang YS et al. Optical-resolution photoacoustic microscopy for volumetric and spectral analysis of histological and immunochemical samples. Angew Chem. 2014;53(31):8099-103. https://doi.org/10.1002/anie.201403812
- Gerber HP et al. VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism. Nature. 2002;417(6892):954-8. https://doi.org/10.1038/nature00821
- Ziegler BL et al. KDR receptor: a key marker defining hematopoietic stem cells. Science. 1999;285(5433):1553-8. https://doi.org/10.1126/science.285.5433.1553
- Dar A, Kollet O, Lapidot T. Mutual, reciprocal SDF-1/CXCR4 interactions between hematopoietic and bone marrow stromal cells regulate human stem cell migration and development in NOD/SCID chimeric mice. Exp Hematol. 2006;34(8):967-75. https://doi.org/10.1016/j.exphem.2006.04.002
- Hattori K, Heissig B, Rafii S. The regulation of hematopoietic stem cell and progenitor mobilization by chemokine SDF-1. Leuk Lymphoma. 2003;44(4):575-82. https://doi.org/10.1080/1042819021000037985
- Greenbaum A et al. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature. 2013;495(7440):227-30. https://doi.org/10.1038/nature11926
- Lu L et al. Effects of recombinant human tumor necrosis factor alpha, recombinant human gamma-interferon, and prostaglandin E on colony formation of human hematopoietic progenitor cells stimulated by natural human pluripotent colony-stimulating factor, pluripoietin alpha, and recombinant erythropoietin in serum-free cultures. Cancer Res. 1986;46(9):4357-61.
- Pronk CJ et al. Tumor necrosis factor restricts hematopoietic stem cell activity in mice: involvement of two distinct receptors. J Exp Med. 2011;208(8):1563-70. https://doi.org/10.1084/jem.20110752
피인용 문헌
- Modeling the human bone marrow niche in mice: From host bone marrow engraftment to bioengineering approaches vol.215, pp.3, 2016, https://doi.org/10.1084/jem.20172139
- Cancer Metastases to Bone: Concepts, Mechanisms, and Interactions with Bone Osteoblasts vol.10, pp.6, 2016, https://doi.org/10.3390/cancers10060182
- Implantable pre-metastatic niches for the study of the microenvironmental regulation of disseminated human tumour cells vol.2, pp.12, 2016, https://doi.org/10.1038/s41551-018-0307-x
- Layered biomimetic nanocomposites replicate bone surface in three-dimensional cell cultures vol.4, pp.4, 2016, https://doi.org/10.1080/20550324.2018.1556895
- Scaffold-Assisted Ectopic Transplantation of Internal Organs and Patient-Derived Tumors vol.5, pp.12, 2019, https://doi.org/10.1021/acsbiomaterials.9b00978
- Fabrication of Bioactive Inverted Colloidal Crystal Scaffolds Using Expanded Polystyrene Beads vol.26, pp.3, 2016, https://doi.org/10.1089/ten.tec.2019.0333
- Printing the Pathway Forward in Bone Metastatic Cancer Research: Applications of 3D Engineered Models and Bioprinted Scaffolds to Recapitulate the Bone-Tumor Niche vol.13, pp.3, 2016, https://doi.org/10.3390/cancers13030507