과제정보
연구 과제 주관 기관 : Yeungnam University, Dae-Gyeong Leading Industry Office
참고문헌
- Moskow BS, Lubarr A. Histological assessment of human periodontal defect after durapatite ceramic implant. Report of a case J Periodontol. 1983;54:455-62.
- Kenney EB, Lekovic V, Han T, Carranza Jr FA, Dimitrijevic B. The use of a porous hydroxyapatite implant in periodontal defects. I. Clinical results after six months. J Periodontol. 1985;56:82-8. https://doi.org/10.1902/jop.1985.56.2.82
- Yukna RA, Yukna CN. A 5-year followup of 16 patients treated with coralline calcium carbonate (Biocoral) bone replacement grafts in infrabony defects. J Clin Periodontol. 1998;25:1036-40. https://doi.org/10.1111/j.1600-051X.1998.tb02410.x
- Zerbo IR, Zijderveld SA, De Boer A, Bronckers AL, De Lange G, Ten Bruggenkate CM, et al. Histomorphometry of human sinus floor augmentation using a porous beta-tricalcium phosphate: a prospective study. Clinical Oral Implants Research. 2004;15:724-32. https://doi.org/10.1111/j.1600-0501.2004.01055.x
- Simion M, Fontana F, Rasperini G, Miorana C. Vertical ridge augmentation by expanded-polytetrafluoroethylene membrane and a combination of intraoral autogenous bone graft and deproteinized anorganic bovine bone (Bio-Oss). Clinical Oral Implants Research. 2007;18:620-9. https://doi.org/10.1111/j.1600-0501.2007.01389.x
- Lu J, Descamps M, Dejou J, Koubi G, Hardouin P, Lemaitre J, et al. The biodegradation mechanism of calcium phosphate biomaterials in bone. J Biomed Mater Res. 2002;63:408-12. https://doi.org/10.1002/jbm.10259
- LeGeros RZ, Lin S, Rohanizadeh R, Mijares D, LeGeros JP. Biphasic calcium phosphate bioceramics: preparation, properties and applications. J Mater Sci Mater Med. 2003;14:201-9. https://doi.org/10.1023/A:1022872421333
- Hulbert SF, Young FA, Mathews RS, Klawitter JJ, Talbert CD, Stelling FH. Potential of ceramic materials as permanently implantable skeletal prostheses. J Biomed Mater Res. 1970;4:433-56. https://doi.org/10.1002/jbm.820040309
- Tsuruga E, Takita H, Itoh H, Wakisaka Y, Kuboki Y. Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis. J Biochem. 1997;121:317-24. https://doi.org/10.1093/oxfordjournals.jbchem.a021589
- Gauthier O, Bouler JM, Aguado E, Pilet P, Daculsi G. Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials. 1998;19:133-9. https://doi.org/10.1016/S0142-9612(97)00180-4
- Kuboki Y, Jin Q, Kikuchi M, Mamood J, Takita H. Geometry of artificial ECM: sizes of pores controlling phenotype expression in BMP-induced osteogenesis and chondrogenesis. Connect Tissue Res. 2002;43:529-34. https://doi.org/10.1080/03008200290001104
- Lecomte A, Gautier H, Bouler JM, Gouyette A, Pegon Y, Daculsi G, et al. Biphasic calcium phosphate: a comparative study of interconnected porosity in two ceramics. J Biomed Mater Res B Appl Biomater. 2008;84:1-6.
- Walsh WR, Vizesi F, Michael D, Auld J, Langdown A, Oliver R, et al. Beta-TCP bone graft substitutes in a bilateral rabbit tibial defect model. Biomaterials. 2008;29:266-71. https://doi.org/10.1016/j.biomaterials.2007.09.035
- Park JW, Kim ES, Jang JH, Suh JY, Park KB, Hanawa T. Healing of rabbit calvarial bone defects using biphasic calcium phosphate ceramics made of submicron-sized grains with a hierarchical pore structure. Clin Oral Impl Res. 2010;21:268-76. https://doi.org/10.1111/j.1600-0501.2009.01846.x
- Andrianarivo AG, Robinson JA, Mann KG, Tracy RP. Growth on type I collagen promotes expression of the osteoblastic phenotype in human osteosarcoma MG-63 cells. J Cell Physiol. 1992;153:256-65. https://doi.org/10.1002/jcp.1041530205
- Lynch MP, Stein JL, Stein GS, Lian JB. The influence of type I collagen on the development and maintenance of the osteoblast phenotype in primary and passaged rat calvarial osteoblasts: modification of expression of genes supporting cell growth, adhesion, and extracellular matrix mineralization. Exp Cell Res. 1995;216:35-45. https://doi.org/10.1006/excr.1995.1005
- Mizuno M, Fujisawa R, Kuboki Y. Type I collagen-induced osteoblastic differentiation of bone-marrow cells mediated by collagenalpha2beta1 integrin interaction. J Cell Physiol. 2000;184:207-13. https://doi.org/10.1002/1097-4652(200008)184:2<207::AID-JCP8>3.0.CO;2-U
- Kihara T, Hirose M, Oshima A, Ohgushi H. Exogenous type I collagen facilitates osteogenic differentiation and acts as a substrate for mineralization of rat marrow mesenchymal stem cells in vitro. Biochem Biophys Res Commun. 2006;341:1029-35. https://doi.org/10.1016/j.bbrc.2006.01.059
- Teixeira S, Fernandes MH, Ferraz MP, Monteiro FJ. Proliferation and mineralization of bone marrow cells cultured on macroporous hydroxyapatite scaffolds functionalized with collagen type I for bone tissue regeneration. J Biomed Mater Res A. 2010;95:1-8.
- Brkovic BM, Prasad HS, Rohrer MD, Konandreas G, Agrogiannis G, Antunovic D, et al. Beta-tricalcium phosphate/type I collagen cones with or without a barrier membrane in human extraction socket healing: clinical, histologic, histomorphometric, and immunohistochemical evaluation. Clin Oral Investig. 2012;16:581-90. https://doi.org/10.1007/s00784-011-0531-1
- Wissink MJ, Beernink R, Pieper JS, Poot AA, Engbers GH, Beugeling T, et al. Immobilization of heparin to EDC/NHS-crosslinked collagen. Characterization and in vitro evaluation. Biomaterials. 2001;22:151-63. https://doi.org/10.1016/S0142-9612(00)00164-2
- Wissink MJ, Beernink R, Poot AA, Engbers GH, Beugeling T, Van Aken WG, et al. Improved endothelialization of vascular grafts by local release of growth factor from heparinized collagen matrices. J Control Release. 2000;64:103-14. https://doi.org/10.1016/S0168-3659(99)00145-5
- Wissink MJ, Beernink R, Scharenborg NM, Poot AA, Engbers GHM, Beugeling T, et al. Endothelial cell seeding of (heparinized) collagen matrices: effects of bFGF pre-loading on proliferation (after low density seeding) and procoagulant factors. J Control Release. 2000;67:141-55. https://doi.org/10.1016/S0168-3659(00)00202-9
- van den Dolder J, Vehof JW, Spauwen PH, Jansen JA. Bone formation by rat bone marrow cells cultured on titanium fiber mesh: Effect of in vitro culture time. J Biomed Mater Res. 2002;62:350-8. https://doi.org/10.1002/jbm.10189
- Lee DW, Lee EJ, Chum SS, Ahn MW, Song IW, Kang IK, et al. Characterization of bone cell behaviors on collagen grafted hydroxyapatite surfaces. Key Eng Mater. 2008;361-363:1143-6. https://doi.org/10.4028/www.scientific.net/KEM.361-363.1143
피인용 문헌
- Synthetic osteoplastic materials for alveolar bone augmentation before dental implantation vol.96, pp.2, 2016, https://doi.org/10.17116/stomat201796270-74
- Radiopaque Hemocompatible Ruminant-Sourced Gut Material with Antimicrobial Physiognomies for Biomedical Applications in Diabetics vol.2, pp.3, 2016, https://doi.org/10.1021/acsomega.6b00373
- The Role of Skeletal Stem Cells in the Reconstruction of Bone Defects vol.28, pp.5, 2016, https://doi.org/10.1097/scs.0000000000003893
- Hard Tissue Augmentation of Aged Bone by Means of a Tin-Free PLLA-PCL Co-Polymer Exhibiting in vivo Anergy and Long-Term Structural Stability vol.65, pp.2, 2016, https://doi.org/10.1159/000494798
- Assessment of stem cell viability in the initial healing period in rabbits with a cranial bone defect according to the type and form of scaffold vol.49, pp.4, 2016, https://doi.org/10.5051/jpis.2019.49.4.258
- Influence of Human Jaw Periosteal Cells Seeded β-Tricalcium Phosphate Scaffolds on Blood Coagulation vol.22, pp.18, 2016, https://doi.org/10.3390/ijms22189942
- Enhanced Bone Regeneration in Variable-Type Biphasic Ceramic Phosphate Scaffolds Using rhBMP-2 vol.22, pp.21, 2016, https://doi.org/10.3390/ijms222111485