특징점 기반의 머신러닝 기술을 이용한 OLED 결함 분류 기술

  • 최학남 (인하대학교 정보통신공학과) ;
  • 김학일 (인하대학교 정보통신공학과)
  • Published : 2016.11.25

Abstract

Keywords

References

  1. Lim, D., D.-G. Seo, and D. Jeong. Defect classification for the inspection of TFT LCD glass. 2005.
  2. Kang, S., et al. Automatic defect classification of TFT-LCD panels using machine learning. in Industrial Electronics, 2009. ISIE 2009. IEEE International Symposium on. 2009. IEEE.
  3. Mitchell, T.M., Machine learning. 1997. Burr Ridge, IL: McGraw Hill, 1997. 45.
  4. Burges, C.J., A tutorial on support vector machines for pattern recognition. Data mining and knowledge discovery, 1998. 2(2): p. 121-167. https://doi.org/10.1023/A:1009715923555
  5. Hu, M.-K., Visual pattern recognition by moment invariants. Information Theory, IRE Transactions on, 1962. 8(2): p. 179-187.
  6. Guyon, I. and A. Elisseeff, An introduction to variable and feature selection. The Journal of Machine Learning Research, 2003. 3: p. 1157-1182.
  7. Jolliffe, I., Principal component analysis. 2002: Wiley Online Library.
  8. Genuer, R., J.-M. Poggi, and C. Tuleau-Malot, Variable selection using random forests. Pattern Recognition Letters, 2010. 31(14): p. 2225-2236. https://doi.org/10.1016/j.patrec.2010.03.014
  9. Altman, N.S., An introduction to kernel and nearest-neighbor nonparametric regression. The American Statistician, 1992. 46(3): p. 175-185.