
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 3, Mar. 2016 1404
Copyright ⓒ2016 KSII

Content-based Configuration Management
System for Software Research and
Development Document Artifacts

Dusan Baek1, Byungjeong Lee2 and Jung-Won Lee1

1 Department of Electrical and Computer Engineering, Ajou University
Suwon, South Korea

 [e-mail: whitedusan@gmail.com, jungwony@ajou.ac.kr]
2 Department of Computer Science and Engineering, The University of Seoul

Seoul, South Korea
[e-mail: bjlee@uos.ac.kr]

*Corresponding author: Jung-Won Lee

Received October 16, 2015; accepted February 18, 2016; published March 31, 2016

Abstract

Because of the properties of software such as invisibility, complexity, and changeability,
software configuration management (SCM) for software artifacts generated during software
life-cycle has been used for guarantee of the quality of the software. However, the existing
SCM system has only focused on code artifacts and software development document artifacts
such as Software Requirements Specification (SRS), Software Design Description (SDD), and
Software Test Description (STD). Moreover, software research-oriented project comes out
late the code artifacts and the software development document artifacts. Therefore, there is a
need for trace and management of software research document artifacts composed of highly
abstracted non-functional requirements like ‘the purpose of the project’, ‘the objectives’, and
‘the progress’ before generation of the code artifacts and the software development document
artifacts for a long time. Nevertheless, the existing SCM system cannot trace and manage them.
In this paper, we propose content-based configuration management system comprised of the
relevance link generation phase and content-based testing phase to trace and manage them.
The preliminary application results show applicability and feasibility of the proposed system.

Keywords: Document Artifact, Relevance Analysis, Software Research and Development
Document Artifact, Software Configuration Management, Traceability

A preliminary version of this paper was presented at APIC-IST(Asia Pacific International Conference on
Information Science and Technology) 2015, July 13-15, 2015, Vietnam, and was slected as an outstanding paper.
This research was supported by Next-Generation Information Computing Development Program through the
National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning
(NRF-2014M3C4A7030504).

http://dx.doi.org/10.3837/tiis.2016.03.027 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 3, March 2016 1405

1. Introduction

Recently, the size of a software research and development (R&D) project has expanded, and
the importance of its quality has increased. For this reason, the management of artifacts
produced during the software R&D life cycle is becoming more significant. Managing the
artifacts leads researchers to improve the quality of their software R&D project [1-3].

In order to manage the artifacts, researchers utilize a software configuration management
(SCM) system which identifies, traces, and controls configuration items in the artifacts [4-6].
Most of the SCM systems evaluate and manage reflection of the requirements in code artifacts
and software development document artifacts such as Software Requirements Specification
(SRS), Software Design Description (SDD) and Software Test Description (STD) [7-9].
However, the software R&D project like a project aiming original technology generates late
the software development document artifacts and the code artifacts. Therefore, before they are
come out, it is necessary to trace and manage highly abstracted non-functional requirements
like ‘the purpose of the project’, ‘the objectives’, ‘the progress’, and ‘the performance history’
in research-related documents for a long time. Even so, it is hard that the existing SCM system
traces and manages them properly.

In order to figure the reason out, we classify the widely used artifacts among software R&D
artifacts into the software research document artifact (e.g. project proposal, annual report,
monthly statement, etc.), the software development document artifact (e.g. SRS, SDD, STD,
etc.), and code artifacts. After that, we apply existing SCM methods to them. Fig. 1 shows the
SCM methods by software R&D artifacts.

The existing SCM system has used three types of comparison methods for SCM. First, it has
traced and managed configuration items including the same requirement in different software
development document artifacts by comparison between the software development document
artifacts (③). Second, it has verified that the requirements in the software development
document artifacts are reflected in the code artifact properly by comparison between the
software development document artifacts and the code artifacts (④). Third, it has traced
modified state, managed software version and dependency, and controlled the changes of

Fig. 1. The SCM methods by software R&D artifacts

1406 Dusan Baek et al.: Content-based Configuration Management System
for Software Research and Development Document Artifacts

functional or physical characteristics by comparison between the code artifacts(⑤). However,
the existing SCM system only considers the specified and well-formed requirements in
software development document artifacts or code artifacts. Thus, it cannot manage and trace
highly abstracted and non-functional requirement in the software research document artifact
through comparisons between the software research document artifacts (①), or the software
research document artifact and the software development document artifact (②) .

There were studies for SCM using the comparison between document artifacts [10-15]. The
studies focused on identification and trace of configuration items in the software document
artifacts. The studies used traceability matrix which was made manually for identifying and
tracing configuration items. Moreover, they applied information retrieval techniques to
automate them. Nevertheless, in common with the existing SCM system, they only took into
account the specified and well-formed requirements. Therefore, they could not cover the SCM
for the software research document artifacts structured as highly abstracted non-functional
requirements.

The more R&D project aims original technology, the research period takes relatively long
time compared to the development period, so the software development document and code
artifacts generate late, which makes it difficult to predict the outcome of the R&D project. Due
to this characteristics, the SCM for the software research document artifacts is more important
in software R&D project. However, the existing SCM system is not able to manage them.

Thus, in this paper, we report the underlying reasons why the existing SCM system cannot
manage the software research document artifacts, and propose a content-based configuration
management system to manage them. The proposed system comprised relevance rule
generation phase and content-based testing phase traces and manages not only the software
development document artifact but also the software research document artifact.

The remainder of this paper is organized as follows. Section 2 reviews some related work
for SCM using a comparison between document artifacts. Section 3 analyses characteristics of
the software R&D document artifacts and the underlying reasons why software research
document artifacts cannot be managed by the existing SCM system. Section 4 explains
content-based configuration management system for SCM of software R&D document
artifacts. Section 5 show the preliminary application results. Finally, Section 6 discusses the
conclusion and future works.

2. Related Work
As mentioned previously, there were many studies for SCM by comparing software document
artifacts.

[10-12] have managed document artifacts for SCM using a traceability matrix. Fig. 2 shows
an example of the traceability matrix. Each requirement in the traceability matrix is identified
by unique ID and located in the first row. Types of document artifacts are located in columns,
and index of configuration items mapped with the requirement is placed in content fields in the
matrix. The traceability matrix can be used to trace the configuration items that have same
requirements in different document artifacts. Furthermore, [13-14] has applied information
retrieval technique to automate generation of the traceability matrix. Using the traceability
matrix has the advantage of easy to use and easy to read by treating simple link in the software
document artifacts. However, it is not appropriate to target software research document

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 3, March 2016 1407

artifacts directly because it is for the well-formed document artifacts created based on the
requirements.

Fig. 2. A traceability matrix

[15] has proposed a method for tracing the requirement by using structural characteristics
of the software document artifacts as shown in Fig. 3.

Fig. 3. A traceability link graph between code artifacts and document artifacts

In Fig. 3, the code artifact has a dependency on other in the dependency relation (①), and
the document artifacts trace the code artifacts in the trace relation named ‘traceability link’
(②). In this situation, [15] has inferred new trace relation (③) between the document artifacts
by using the dependency relation (①), the trace relation (②), and the structural information of
the document artifacts. These kinds of studies have suggested new approach using the
software document artifacts. However, the method is unsuitable for directly applying to the
software research document artifacts composed of various formats because it aims the
well-formed document artifacts. Moreover, the generation of software code artifacts takes
especially long time in the software R&D projects for original technology. Thus, the method
which needs software code artifacts for inferring new trace relation has a limitation of SCM of
software R&D document artifacts.

In this paper, we propose the content-based configuration management system. The
proposed system generates ‘relevance link’, which would manage highly abstracted
non-functional requirements in software research document artifacts. The relevance link
consists of related two configuration items and the rule which the two configuration items
have to follow, and it is used for SCM of the software R&D document artifacts. Before explain
about what is the relevance link in detail and how can they manage the software research
document artifacts, we analyze characteristics of the software R&D Document artifacts to find
out the underlying reasons why the existing SCM system cannot manage them.

1408 Dusan Baek et al.: Content-based Configuration Management System
for Software Research and Development Document Artifacts

3. Analysis of Characteristics of the Software R&D Document Artifacts
In this section, we analyze characteristics of the software R&D document artifacts and the
underlying reasons why the existing SCM cannot manage the software research document
artifacts.

3.1 Classification of artifacts
We classify the artifacts in order to figure the reason out why the existing SCM cannot manage.
Table 1 is a classification table for the artifact produced during the software R&D life cycle.

Table 1. The classification table for artifacts
Artifact Type Document Type

Software Development
Document Artifact

Software Requirement Specification (SRS)
Software Design Description (SDD)

Software Product Specification (SPS)
Software Test Description (STD)

Software Research
Document Artifact

Project Proposal
Annual Report

Monthly statement
Software Code Artifact Source Code

Software artifacts are classified into the code artifacts and the document artifacts. The

document artifacts are composed of the software development document artifacts and the
software research document artifacts. The software development document artifacts include
SRS, SDD, STD, SPS, etc. The software research document artifacts contain project proposal,
monthly statement, annual report, etc.

The existing SCM system conducts SCM for the software code artifacts and the software
development document artifacts. However, it cannot carry out SCM for the software research
document artifacts which are comprised of abstracted items and various formats. The next
section explains the reason.

3.2 Differences between Software Research Document Artifacts and Software
Development Document Artifacts
In the case of the software development document artifacts, each item(or section) has been
composed based on the requirements, and identified by the identifier based on the requirement
as shown Fig. 4 (a). The existing SCM system distinguishes and traces the configuration items
having the same requirement in different documents by using the identifier. In Fig. 4 (a), each
arrow means the traceability link between the configuration items having the same
requirement. And the traceability link has the number to differentiate itself from the others that
have different requirements.

On the other hand, in the case of the software research document artifacts, each item(or
section) has been comprised based on the understanding of the researcher as shown Fig. 4 (b).
Therefore, even if there are configuration items having the same relevance in the different
software research document artifacts, it is more important what the relevance means than itself.
Because the traceability has just one meaning as itself but the relevance can have various

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 3, March 2016 1409

meanings such as sufficient, necessary and equal. For this reason, traceability link is transitive

relation, but relevance is not transitive relation.
The existing SCM system cannot manage the software research document artifacts. To

solve the problem, we design the content-based configuration management system.
In this paper, we coin the term as follows.

● Relevance: semantic homogeneity between configuration items in different document
artifacts

● Corresponding items: two configuration items having same relevance.

● Relevance rule: the rule which corresponding items have to follow.

● Relevance link: mapping between corresponding items and relevance rule.

4. Content-based Configuration Management System
Content-based configuration management system consists of relevance rule generation phase
and content-based testing phase. In relevance link generation phase, a researcher generates
relevance links. In content-based testing phase, the researcher conducts content-based testing
for SCM of the software R&D document artifact using the relevance links generated from
previous phase. In this section, we explain each phase in detail.

4.1 Relevance Link Generation Phase
The relevance link generation phase is composed of four modules, which are template-based
document artifact parsing module, configuration item identification module, corresponding
items extraction module and relevance link generation module. In this phase, a researcher can
make the relevance link of each document artifact type using the document artifacts and

(a) The tracability link graph of the software development document artifacts

(b) The relevance graph of the software research document artifacts

Fig. 4. The difference between the traceability link graph and the relevance graph

1410 Dusan Baek et al.: Content-based Configuration Management System
for Software Research and Development Document Artifacts

pre-defined relevance rules. Fig. 5 shows the system architecture in the relevance link
generation phase.

Template-based Document Artifact Parsing Module (①): This module has the role of
parsing the items used in the configuration item identification module. For this, the module
parses document artifacts provided from a document artifact database. Because the items will
be used for identification of configuration items, all titles of section and subsection levels are
needed, not contents (i.e. template-based parsing). Therefore, the document artifacts having a
same structure are handled as an equivalent type, and they don’t need to be redundantly
parsed.

Configuration Item Identification Module (②): For efficient SCM, configuration items
which have to be managed should be extracted and identified from the indiscriminately parsed
items (e.g. ‘the purpose of the project’, ‘the objectives’, ‘the progress’, and ‘the performance
history’, etc.). Fig. 6 is the example of identifying the configuration items. In Fig. 6, the items
in the left tree chart are extracted and identified to the configuration items in the right tree
chart.

Fig. 6. The example of identifying the configuration items

Fig. 5. The system architecture in relevancelink generation phase

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 3, March 2016 1411

Corresponding Items Extraction Module (③): Corresponding items are two configuration
items having same relevance, and they are extracted for the relevance link. For extracting the
corresponding items, in addition to the basis document artifact having the configuration item
which a researcher wants to extract, all the compared document artifacts having corresponding
items of it are required. Because the relevance link is not transitive relation, one-to-one
comparison is essential. Furthermore, since the relevance link is not commutative relation, the
researcher has to consider not only the forward comparison, but also the backward comparison.
Fig. 7 is the example of corresponding items extraction by considering the forward
comparison of the project proposal as the basis document artifact.

Fig. 7. The example of corresponding items extraction

Relevance Link Geneartion Module (④): As mentioned above, a relevance link is

composed of corresponding items and the relevance rule which they have to follow. Thus,
after extracting the corresponding items, the researcher assigns the relevance rule to the
corresponding items. The relevance rules defined by the results of the previous study, and are
shown in Table 2 [16]. The pre-defined relevance rules can be modified, added or removed
during the software R&D life cycle. After the mapping between the corresponding items and
relevance rules, generating relevance link is completed, as shown in Fig. 8.

Fig. 8. The example of the relevance link

1412 Dusan Baek et al.: Content-based Configuration Management System
for Software Research and Development Document Artifacts

Table 2. The relevance rules
Relevance Rule Explanation

Structural ~ (prefix) Structure of contents in configuration item is very simple, it
can be inferred by using simple comparison.

Structural sufficient condition
(ST-SC)

All contents in configuration item in the basis document are
included in the configuration item in the compared document

Structural necessary condition
(ST-NC)

The configuration item in the basis document includes all
contents in the configuration item in the compared document

Structural equal condition (ST-EC)
All contents in the configuration item in the basis document
are the same as all contents in the configuration item in the
compared document

Structural partial equal condition
(ST-PEC)

Some contents in the configuration item in the basis
document are included in the configuration item in the
compared document

Semantic ~ (prefix) Structure of contents in configuration item is complex, it can
be inferred by human or by using an inference algorithm.

Semantic sufficient condition
(SE-SC) Semantically sufficient condition

Semantic necessary condition
(SE-NC) Semantically necessary condition

Semantic equal condition (SE-EC) Semantically equal condition
Semantic partial equal condition
(SE-PEC) Semantically partial equal condition

4.2 Content-based testing phase

Content-based testing phase is comprised of one module, which is the content-based test
module. In this phase, a researcher can test software R&D document artifacts for SCM of them
using the relevance link. Fig. 9 shows the system architecture in the content-based testing
phase.

Fig. 9. The system architecture in content-based testing phase

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 3, March 2016 1413

Content-based Test Module (⑤): A researcher inputs the software R&D document artifact
which the researcher wants to trace and manage and the relevance rule of it. Then, the module
retrieves the compared document artifacts in the document artifact DB storing all the software
R&D document artifacts generated during software R&D life cycle. The module tests whether
the corresponding items in the basis document artifact and the compared document artifacts
keep the relevance rules. In this paper, this process is manually conducted by a researcher. We
will expand the module to be automatically tested using the textual inference.

The result of the content-based test provides grounds for determining consistency and
completeness of the tested software R&D document artifact. Moreover, the content-based test
assists objective evaluation of the software R&D document artifacts.

5. Application
For a preliminary application of the proposed content-based configuration management
system, we conduct SCM for ‘Project proposal’ and ‘1st annual report’ made from a previous
real project. We use ‘Project proposal’ as the compared document, and ‘1st annual report’ as
the basis document. Each software research document artifacts are parsed and marshaled by
the system. In the preliminary application, we manually fills the corresponding items and
relevance rules to make relevance links. After generation of the relevance link, the
content-based test module tests contents of the software research document artifacts using the
relevance links. For this, the system displays the contents of the corresponding items and the
relevance rule, and is fed back whether the corresponding items follow the relevance rule or
not by us. After the test is completed for all the corresponding items, it informs the test results,
as shown Table 3.

Table 3. The result of preliminary application

Basis Configuration
Item

Compared
Configuration

Item

Relevance
Rule Result

AR-1-A-1 PP-2-1 ST-EC TRUE

AR-1-A-2
PP-2-3 ST-SC TRUE

PP-3-2 ST-SC TRUE

AR-1-B-1
PP-3-2 SE-SC TRUE

PP-3-3 SE-NC TRUE
AR-1-B-2 PP-3-3-1 SE-NC FALSE

Through the preliminary application, we verify that 5 items in the 1st annual report follow

the relevance rules, but 1 item (AR-1-B-2) doesn’t follow the relevance rule (SE-NC).
AR-1-B-2 item which is about current year research method in the 1st annual report has to
include all contents of PP-3-3-1 item which is about 1st year’s methodology in the project
proposal. However, AR-1-B-2 item omits one plan among the plans in the project proposal.

In this way, the content-based configuration management system can conduct SCM of the
software R&D document artifacts which the existing SCM system cannot manage, and it can
help the researchers who particularly focus on the original technology.

1414 Dusan Baek et al.: Content-based Configuration Management System
for Software Research and Development Document Artifacts

6. Conclusion
The existing SCM system has carried out the SCM of the software artifacts based on the
configuration items which only have one meaning as the requirement. Therefore, it cannot
have managed the software research document artifacts which have various meanings such as
sufficient, necessary, equal and partial equal. To solve this problem, we propose the
content-based configuration management system. It identifies configuration items from
software R&D document artifacts, and extracts corresponding items from the configuration
items in a basis document artifact and compared document artifacts. Then, it maps between the
corresponding items and the relevance rule to generate the relevance link. Finally, it performs
the content-based test of the software R&D document artifacts using the relevance link. The
results of the content-based test provide grounds for determining consistency and
completeness of the tested software R&D document artifact. Moreover, it can assist objective
evaluation of the software R&D document artifacts. For the future work, we plan to study how
to determine consistency and completeness. In addition, we will expand the content-based test
to be automatically tested by using the textual inference.

References
[1] Institute of Electrical and Electronics Engineers, “IEEE Guide to Software Configuration

Management,” An American Standard. IEEE, 1988. Article (CrossRef Link)
[2] Standard, I. "Systems and software engineering–system life cycle processes." ISO Standard 15288,

2008. Article (CrossRefLink)
[3] Wang, Juite, and Yung-I. Lin, "A fuzzy multicriteria group decision making approach to select

configuration items for software development," Fuzzy Sets and Systems 134.3, 343-363, 2003.
Article (CrossRefLink)

[4] Dart, Suan. “Concepts in configuration management systems,” in Proc. of the 3rd international
workshop on Software configuration management, pp. 1-18, May, 1991. Article (CrossRefLink)

[5] Gotel, Orlena CZ and Anthony CW Finkelstein, "An analysis of the requirements traceability
problem,” Requirements Engineering, 1994, Proc. of the 1st Int. Conference, pp. 94-101, April,
1994. Article (CrossRefLink)

[6] Aiello, Robert, and Leslie Sachs. Configuration Management Best Practices: Practical Methods
that Work in the Real World. Pearson Education, 2010. Article (CrossRefLink)

[7] “IEEE Recommended Practice for Software Requirements Specifications," IEEE Std 830-1998,
vol., no., pp.1-40, Oct. 20 1998. Article (CrossRefLink)

[8] “IEEE Standard for Information Technology--Systems Design--Software Design Descriptions,"
IEEE STD 1016-2009 , vol., no., pp.1-35, July 20 2009. Article (CrossRefLink)

[9] “IEEE Standard for Software and System Test Documentation," IEEE Std 829-2008 , vol., no.,
pp.1-150, July 18 2008. Article (CrossRefLink)

[10] Kyunghwan Kim, Neunghoe Kim and Donghyun Lee, Hoh Peter In, “Requirements Trace Table
based on Pain Chain for improving Maintainability,” in Proc. of the Korean Information Science
Society Conference, vol. 38, no. 1(A), pp. 206-209, 2011. Article (CrossRefLink)

[11] Ju Young Kim and Sung Yul Rhew, “An Empirical Study on Tracking Table for Consistency and
Completeness Validation in the Outputs,” Journal of KIISE: Software and Applications, vol. 34,
no.5, pp. 419-430, 2007. Article (CrossRefLink)

[12] Lormans, Marco and Arie van Deursen, "Reconstructing requirements coverage views from design
and test using traceability recovery via LSI," in Proc. of the 3rd international workshop on
Traceability in emerging forms of software engineering. ACM, 2005. Article(CrossRefLink)

[13] Hayes, Jane Huffman, Alex Dekhtyar, and Senthil Karthikeyan Sundaram, “Advancing candidate
link generation for requirements tracing: The study of methods,” Software Engineering, IEEE
Transactions on 32.1, 4-19, 2006. Article (CrossRefLink)

http://dx.doi.org/10.1109/IEEESTD.1988.94582
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=63711
http://dx.doi.org/10.1016/S0165-0114(02)00283-X
http://dx.doi.org/10.1145/111062.111063
http://dx.doi.org/10.1109/ICRE.1994.292398
http://dl.acm.org/citation.cfm?id=1869711
http://dx.doi.org/10.1109/IEEESTD.1998.88286
http://dx.doi.org/10.1109/IEEESTD.2009.5167255
http://dx.doi.org/10.1109/IEEESTD.2008.4578383
http://www.dbpia.co.kr/Article/NODE01687888
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001070940
http://dx.doi.org/10.1145/1107656.1107665
http://dx.doi.org/10.1109/TSE.2006.3

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 3, March 2016 1415

[14] De Lucia, Andrea, et al, "Information retrieval methods for automated traceability recovery,"
Software and systems traceability, Springer London, 71-98, 2012. Article (CrossRefLink)

[15] McMillan, Collin, Denys Poshyvanyk, and Meghan Revelle, "Combining textual and structural
analysis of software artifacts for traceability link recovery," in Proc. of Traceability in Emerging
Forms of Software Engineering, 2009. TEFSE'09. ICSE Workshop, pp. 41-48, May, 2009.
Article (CrossRefLink)

[16] Dusan Baek, Jung-Won Lee, “An analysis of relevance for traceability of corresponding items
between software research and development document artifacts”, in Proc. of the 17th Korea
Conference on Software Engineering, vol. 17, no.1, pp. 13-20, 2015. Article (CrossRefLink)

Dusan Baek received the B.S. degree in Electrical and Computer Engineering at Ajou
University, Korea in 2012. He is currently studying toward the Ph.D. degree in Electrical
and Computer Engineering at Ajou University. His research areas include embedded
software, mobile computing and software engineering.

Byungjeong Lee. He received the B.S., M.S., and Ph.D. degrees in Computer Science
from Seoul National University in 1990, 1998, and 2002, respectively. He was a
researcher of Hyundai Electronics, Corp. from 1990 to 1998. Currently, he is a professor
of the Department of Computer Science and Engineering at the University of Seoul,
Korea. His research areas include software engineering and web science.

Jung-Won Lee is an associate professor of the Department of Electrical and Computer
Engineering at Ajou University, Korea. She received her PhD. Degree in Computer
Science and Engineering from Ewha Womans University, Korea, in 2003. She was a
researcher of LG Electronics and did an internship in the IBM Almaden Research Center,
USA. Her areas of research include context-aware, embedded software and software
engineering.

http://dx.doi.org/10.1007/978-1-4471-2239-5_4
http://dx.doi.org/10.1109/TEFSE.2009.5069582
http://www.sigsoft.or.kr/data/KCSE/kcse2015_%ED%94%84%EB%A1%9C%EC%8B%9C%EB%94%A9.pdf

