Abstract
Cooperation and collaboration with robots are key functions of robotic utility that are currently developing. Thus, robots should be safe and resemble human beings to cope with these needs. In particular, dual-arm robots that mimic human kinetics are becoming the focus of recent industrial robotics research. Their size is similar to the size of a human adult; however, they lack natural, human-like motion. One of the critical reasons for this is the shoulder complex. Most recent dual-arm robots have only 2 degrees of freedoms (DOFs), which significantly limits the workspace and mobility of the shoulders and arms. Therefore, a redundant shoulder complex could be very important in new developments that enable new capabilities. However, constructing a kinematically redundant shoulder complex is difficult because of spatial constraints. Therefore, we propose a novel, redundant shoulder complex for a human-like robot that is driven by flexible wire tendons. This kinematically redundant shoulder complex allows human-like robots to move more naturally because of redundant DOFs. To control the proposed shoulder complex, a hybrid control scheme is used. The positioning precision has also been considered, and the ability of the shoulder complex to perform several human-like motions has been verified.