Abstract
In this paper, important design parameters for parallel kinematic robots are defined, paying special attention to machining errors which may cause kinematic errors at the end effector of a robot. The kinematic effects caused by each design parameter, as well as their upper/lower limits, are analyzed here. To do so, we have developed a novel software program to compute kinematic errors by considering its defined design parameters. With this program, roboticists designing parallel kinematic robots can understand the important design parameters for which upper/lower allowances have to be strictly controlled in the design process. This tactic can be used for the design of high-speed, parallel kinematic robots to reduce the design/manufacturing costs and increase kinematic precision.