Isothiocyanates in Brassica: Potential Anti Cancer Agents

  • Published : 2016.09.01

Abstract

Isothiocyanates are naturally occurring small molecules that are formed from glucosinolate precursors of cruciferous vegetables. Many isothiocyanates, both natural and synthetic, display anti-carcinogenic activity because they reduce activation of carcinogens and increase their detoxification. This minireview summarizes the current knowledge on isothiocyanates and focuses on their role as potential anti-cancer agents.

Keywords

References

  1. Bedane Kibrom G, Singh Girija S (2015). Reactivity and diverse synthetic applications of acyl isothiocyanates. Arkivoc, 6, 206-45.
  2. Bones AM and Rossiter JT (2006). The enzymic and chemically induced decomposition of glucosinolates. Phytochemistry, 67, 1053-67. https://doi.org/10.1016/j.phytochem.2006.02.024
  3. Boreddy SR, Sahu RP, Srivastava SK (2011). Benzyl isothiocyanate suppresses pancreatic tumor angiogenesis and invasion by inhibiting HIF-alpha/VEGF/Rho-GTPases: pivotal role of STAT-3. PLoS ONE, 6, 25799. https://doi.org/10.1371/journal.pone.0025799
  4. Brown KK, Hampton MB (2011). Biological targets of isothiocyanates. Biochim Biophys Acta, 1810, 888-94. https://doi.org/10.1016/j.bbagen.2011.06.004
  5. Calmes B, Guyen GN', Dumur J, et al (2015). Glucosinolatederived isothiocyanates impact mitochondrial function in fungal cells and elicit an oxidative stress response necessary for growth recovery. Plant Sci, 6, 414.
  6. Cartea ME, Francisco M, Lema M, et al (2010). Resistance of cabbage (Brassica oleracea capitata group) crops to Mamestra brassicae. J Econ Entomol, 103, 1866-1874. https://doi.org/10.1603/EC09375
  7. Chung FL, Jiao D, Getahun SM, et al (1998). A urinary biomarker for uptake of dietary isothiocyanates in humans. Cancer Epidemiol Biomarkers Prev, 7, 103-8.
  8. Clay NK, Adio AM, Denoux C, et al (2009). Glucosinolate metabolites required for an Arabidopsis innate immune response. Science, 323, 95-101. https://doi.org/10.1126/science.1164627
  9. Cuddihy SL, Brown KK, Thomson SJ, et al (2008). Induction of apoptosis by phenethyl isothiocyanate in cells overexpressing Bcl-XL. Cancer Lett, 271, 215-221. https://doi.org/10.1016/j.canlet.2008.06.002
  10. de Figueiredo SM, Filho SA, Nogueira-Machado JA, et al (2013). The anti-oxidant properties of isothiocyanates: a review. Recent Pat Endocr Metab Immune Drug Discov, 7, 213-25. https://doi.org/10.2174/18722148113079990011
  11. Dinkova-Kostova AT, Kostov RV (2012). Glucosinolates and isothiocyanates in health and disease. Trends Mol Med, 18, 337-47. https://doi.org/10.1016/j.molmed.2012.04.003
  12. Fahey JW, Haristoy X, Dolan PM, et al (2002). Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo[a] pyrene-induced stomach tumors. Proc Natl Acad Sci USA, 99, 7610-5. https://doi.org/10.1073/pnas.112203099
  13. Fimognari C, Hrelia P (2007). Sulforaphane as a promising molecule for fighting cancer. Mutat Res, 635, 90-104. https://doi.org/10.1016/j.mrrev.2006.10.004
  14. Halkier BA, Gershenzon J (2006). Biology and biochemistry of glucosinolates. Annu Rev Plant Biol, 57, 303-33. https://doi.org/10.1146/annurev.arplant.57.032905.105228
  15. Hecht SS (2004). Chemoprevention by Isothiocyanates. In: Kelloff GJ, Hawk ET, Sigman CC, eds. Promising Cancer Chemopreventive Agents, Volume 1: Cancer Chemopreventive Agents. Totowa, NJ: Humana Press: 21-35.
  16. Hu R, Kim BR, Chen C, et al (2003). The roles of JNK and apoptotic signaling pathways in PEITC-mediated responses in human HT-29 colon adenocarcinoma cells. Carcinogenesis, 24, 1361-7. https://doi.org/10.1093/carcin/bgg092
  17. Kensler TW, Talalay P (2004). In: Kelloff GJ, Hawk ET, Sigman CC, eds. Promising Cancer Chemopreventive Agents, Volume 1: Cancer Chemopreventive Agents, Totowa, NJ: Humana Press, 3-20.
  18. Kissen R, Rossiter JT, Bones AM (2009). The 'mustard oil bomb'; not so easy to assemble?! Localization, expression and distribution of the components of the myrosinase enzyme system. Phytochem Rev, 8, 69-86. https://doi.org/10.1007/s11101-008-9109-1
  19. Kong XY, Kissen R, Bones AM (2012). Characterization of recombinant nitrile-specifier proteins (NSPs) of Arabidopsis thaliana: Dependency on Fe (II) ions and the effect of glucosinolate substrate and reaction conditions. Phytochemistry, 84, 7-17. https://doi.org/10.1016/j.phytochem.2012.08.004
  20. Kusznierewicz B, Bartoszek A, Wolska L, et al (2008). Partial characterization of white cabbage (Brassica oleracea var. capitata f. alba) from different regions by glucosinolates, bioactive compounds, total antioxidant activities and proteins. LWT-Food Sci. Technol, 41, 1-9. https://doi.org/10.1016/j.lwt.2007.02.007
  21. Lawson Ann P, Long Marcus J C, Coffey Rory T, et al (2015). Naturally occurring isothiocyanates exert anticancer effects by inhibiting deubiquitinating enzymes. Cancer Res, 1, 5130-42.
  22. Martinez-Ballesta M, Moreno-Fernandez DA, Castejon D, et al (2015). The impact of the absence of aliphatic glucosinolates on water transport under salt stress in Arabidopsis thaliana. Frontiers Plant Sci, 6, 524.
  23. Mennicke WH, Kral T, Krumbiegel G, et al (1987). Determination of N-acetyl-S-(N-alkylthiocarbamoyl)-l-cysteine, a principal metabolite of alkyl isothiocyanates, in rat urine. J Chromatography B: Biomedical Sci Applicati, 414, 19-24. https://doi.org/10.1016/0378-4347(87)80020-8
  24. Mi L, Xiao Z, Hood B L, et al (2008). Covalent binding to tubulin by isothiocyanates. A mechanism of cell growth arrest and apoptosis. J Biol Chem, 283, 22136-46. https://doi.org/10.1074/jbc.M802330200
  25. Navarro SL, Li F, Lampe JW (2011). Mechanisms of action of isothiocyanates in cancer chemoprevention: an update. Food Funct, 2, 579-87. https://doi.org/10.1039/c1fo10114e
  26. Overby A, Stokland RA, Asberg SE, et al (2015). Allyl isothiocyanate depletes glutathione and upregulates expression of glutathione S-transferases in Arabidopsis thaliana. Front Plant Sci, 6, 277.
  27. Padilla G, Cartea ME, Velasco P, et al (2007). Variation of glucosinolates in vegetable crops of Brassica rapa. Phytochemistry, 68, 536-545. https://doi.org/10.1016/j.phytochem.2006.11.017
  28. Razis Ahmad Faizal Abdull, Noor Noramaliza Mohd (2013). Cruciferous vegetables: dietary phytochemicals for cancer prevention. Asian Pac J Cancer Prev, 14, 1565-70. https://doi.org/10.7314/APJCP.2013.14.3.1565
  29. Rungapamestry V, Duncan AJ, Fuller Z, et al (2006). Changes in glucosinolate concentrations, myrosinase activity, and production of metabolites of glucosinolates in cabbage (Brassica oleracea Var. capitata) cooked for different durations. J Agric Food Chem, 54, 28-7634.
  30. Satyan KS, Swamy N, Dizon DS, et al (2006). Phenethyl isothiocyanate (PEITC) inhibits growth of ovarian cancer cells by inducing apoptosis: role of caspase and MAPK activation. Gynecol Oncol, 103, 261-70. https://doi.org/10.1016/j.ygyno.2006.03.002
  31. Schonhof I, Krumbein A, Bruckner B (2004). Genotypic effects on glucosinolates and sensory properties of broccoli and cauliflower. Nahrung, 48, 25-33. https://doi.org/10.1002/food.200300329
  32. Sellam A, Dongo A, Guillemette T, Hudhomme P, Simoneau P (2007b). Transcriptional responses to exposure to the brassicaceous defence metabolites camalexin and allylisothiocyanate in the necrotrophic fungus Alternaria brassicicola. Mol Plant Pathol, 8, 195-208. https://doi.org/10.1111/j.1364-3703.2007.00387.x
  33. Shapiro TA, Fahey JW, Wade KL, et al (1998). Human metabolism and excretion of cancer chemoprotective glucosinolates and isothiocyanates of cruciferous vegetables. Cancer Epidemiol Biomarkers Prev, 7, 1091-100.
  34. Shapiro TA, Fahey JW, Wade KL, et al (2001). Chemoprotective glucosinolates and isothiocyanates of broccoli sprouts metabolism and excretion in humans. Cancer Epidemiol Biomarkers Prev, 10, 501-8.
  35. Sharma A, Salej S, Agrawal PK, et al (2016). Detection and assessment of nutraceuticals in methanolic extract of finger (Eleusine coracana) and barnyard millet (Echinochloa frumentacea). Asian J Chem, 28, 1633-7. https://doi.org/10.14233/ajchem.2016.19790
  36. Singh SV, Singh K (2012). Cancer chemoprevention with dietary isothiocyanates mature for clinical translational research. Carcinogenesis, 33, 1833-1842. https://doi.org/10.1093/carcin/bgs216
  37. Sommen G (2004). Phenyl isothiocyanate: A very useful reagent in heterocyclic synthesis. Synlett, 7, 1323-4.
  38. Song L, Thornalley PJ (2007). Effect of storage, processing and cooking on glucosinolate content of Brassica vegetables. Food Chem Toxicol, 45, 216-24. https://doi.org/10.1016/j.fct.2006.07.021
  39. Stotz HU, Sawada Y, Shimada Y, et al (2011). Role of camalexin, indole glucosinolates, and side chain modification of glucosinolate-derived isothiocyanates in defense of Arabidopsis against Sclerotinia sclerotiorum. Plant J, 67, 81-93. https://doi.org/10.1111/j.1365-313X.2011.04578.x
  40. Trachootham D, Zhang H, Zhang W, et al (2008). Effective elimination of fludarabine-resistant CLL cells by PEITC through a redox-mediated mechanism. Blood, 112, 1912-22. https://doi.org/10.1182/blood-2008-04-149815
  41. Trofimov BA (1999). Reactions of unsaturated carbanions with isothiocyanates: a new avenue to fundamental heterocycles. J Heterocycl Chem, 36, 1469. https://doi.org/10.1002/jhet.5570360609
  42. Verkerk R, Dekker M (2004). Glucosinolates and myrosinase activity in red cabbage (Brassica oleracea L. var. Capitata f. rubra DC.) after various microwave treatments. J Agric Food Chem, 52, 7318-23. https://doi.org/10.1021/jf0493268
  43. Wittstock U, Burow M (2010). Glucosinolate breakdown in arabidopsis: mechanism, regulation and biological significance. Arabidopsis Book, 8, 134.
  44. Wu X, Zhou Q-H, Xu K (2009). Are isothiocyanates potential anti-cancer drugs? Acta Pharmacologica Sinica, 30, 501-12. https://doi.org/10.1038/aps.2009.50
  45. Xu K, Thornalley PJ (2001). Involvement of glutathione metabolism in the cytotoxicity of the phenethyl isothiocyanate and its cysteine conjugate to human leukaemia cells in vitro. Biochem Pharmacol, 61, 165-77. https://doi.org/10.1016/S0006-2952(00)00526-8
  46. Yi G-E, Robin Arif Hasan Khan, Yang K, et al (2015). Identification and expression analysis of glucosinolate biosynthetic genes and estimation of glucosinolate contents in edible organs of brassica oleracea subspecies. Molecules, 20, 13089-111. https://doi.org/10.3390/molecules200713089
  47. Zhang Y (2004). Cancer-preventive isothiocyanates: measurement of human exposure and mechanism of action. Mutat Res, 555, 173-90. https://doi.org/10.1016/j.mrfmmm.2004.04.017
  48. Zhang Y, Tang L (2007). Discovery and development of sulforaphane as a cancer chemopreventive phytochemical. Acta Pharmacol Sin, 28, 1343-1354. https://doi.org/10.1111/j.1745-7254.2007.00679.x
  49. Zhong B, Al-Awar RS, Shih C, et al (2006). Novel route to the synthesis of 4-quinolyl isothiocyanates. Tetrahedron Letters, 47, 2161-4. https://doi.org/10.1016/j.tetlet.2006.01.119
  50. Zubia E, Ortega MJ, Hernandez-Guerrero CJ, et al (2008). Isothiocyanate sesquiterpenes from a sponge of the genus axinyssa. J Nat Prod, 71, 608-14. https://doi.org/10.1021/np070593s