References
- Baskar G, Renganathan S (2011). Optimization of media components and operating conditions for exogenous production of fungal L-asparaginase. Chiang Mai J Sci, 38, 270-79.
- Baskar G, Renganathan S (2012). Optimization of L-asparaginase production by Aspergillus terreus MTCC 1782 using response surface methodology and artificial neural network linked genetic algorithm. Asia-Pac J Chem Eng, 7, 212-20. https://doi.org/10.1002/apj.520
- Bradford M (1974). A rapid and sensitive method method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72, 248-54.
- Chytil P, Etrych T, Konak C, et al (2008). New HPMA copolymer-based drug carriers with covalently bound hydrophobic substituents for solid tumour targeting. J Control Release, 127, 121-30. https://doi.org/10.1016/j.jconrel.2008.01.007
- Kaushik NT, Snehit SM, Rasesh YP (2010). Biological synthesis of metallic nanoparticles. Nanomedicine, 6, 257-262. https://doi.org/10.1016/j.nano.2009.07.002
- Maeda H, Wu J, Sawa T, et al (2000). Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J Control Release, 65, 271-84. https://doi.org/10.1016/S0168-3659(99)00248-5
- Marangoni VS, Paino IM, Zucolotto V (2013). Synthesis and characterization of jacalin-goldnanoparticles conjugates as specific markers for cancer cells. Colloids Surf B: Biointerfaces, 112, 380-86. https://doi.org/10.1016/j.colsurfb.2013.07.070
- Matsumura Y, Maeda H (1986). A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res, 46, 6387-92.
- Michaelis K, Hoffmann MM, Dreis S, et al (2006). Covalent linkage of apolipoprotein e to albumin Nanoparticles strongly enhances drug transport into the brain. J Pharmacol Exp Ther, 317, 1246-53. https://doi.org/10.1124/jpet.105.097139
- Mosmann, T (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods, 65, 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
- Parveen S, Misra R, Sahoo SK (2012). Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine, 8, 147-66. https://doi.org/10.1016/j.nano.2011.05.016
- Sinclair R, Li H, Madsen S, Dai H (2013). HREM analysis of graphite-encapsulated metallic nanoparticles for possible medical applications. Ultramicroscopy, 134, 167-74. https://doi.org/10.1016/j.ultramic.2013.05.006
- Steiniger SC, Kreuter J, Khalansky AS, et al (2004). Chemotherapy of glioblastomain rats using doxorubicinloaded nanoparticles. Int J Cancer, 109, 759-67. https://doi.org/10.1002/ijc.20048
- Tokonami S, Yamamoto Y, Shiigi H, et al (2012). Synthesis and bioanalytical applications of specific-shaped metallic nanostructures: A review. Anal Chim Acta, 716, 76-91. https://doi.org/10.1016/j.aca.2011.12.025
- Tong R, Yala L, Fan TM, et al (2010). The formulation of aptamer-coated paclitaxel-polylactide nanoconjugates and their targeting to cancer cells. Biomaterials, 31, 3043-53. https://doi.org/10.1016/j.biomaterials.2010.01.009
- Wohlfart S, Khalansky AS, Gelperina S, et al (2011). Efficient chemotherapy of rat glioblastoma using doxorubicin-loaded PLGA nanoparticles with different stabilizers. PLOS One, 6, 19121. https://doi.org/10.1371/journal.pone.0019121
- Wriston JC Jr, Yellin TO. (1973). L-asparaginase: A review. Adv Enzymol Relat Areas Mol Biol, 39, 185- 248.
- Yu BY, Kwak SY (2010). Assembly of magnetite nanoparticles into spherical mesoporous aggregates with a 3-D wormholelike porous structure. J Mater Chem, 20, 8320-28. https://doi.org/10.1039/c0jm01274b