DOI QR코드

DOI QR Code

Multiple cracking analysis of HTPP-ECC by digital image correlation method

  • Received : 2015.03.09
  • Accepted : 2016.03.03
  • Published : 2016.06.25

Abstract

This study aims to characterize the multiple cracking behavior of HTPP-ECC (High tenacity polypropylene fiber reinforced engineered cementitious composites) by Digital Image Correlation (DIC) Method. Digital images have been captured from a dogbone shaped HTPP-ECC specimen exhibiting 3.1% tensile ductility under loading. Images analyzed by VIC-2D software and ${\varepsilon}_{xx}$ strain maps have been obtained. Crack widths were computed from the ${\varepsilon}_{xx}$ strain maps and crack width distributions were determined throughout the specimen. The strain values from real LVDTs were also compared with virtual LVDTs digitally attached on digital images. Results confirmed that it is possible to accurately monitor the initiation and propagation of any single crack or multiple cracks by DIC at the whole interval of testing. Although the analysis require some post-processing operations, DIC based crack analysis methodology can be used as a promising and versatile tool for quality control of HTPP-ECC and other strain hardening composites.

Keywords

Acknowledgement

Supported by : TUBITAK (The Scientific and Technological Research Council of Turkey)

References

  1. Abanto-Bueno, J. and Lambros, J. (2002), "Investigation of crack growth in functionally graded materials using digital image correlation", Eng. Fract. Mech., 69(14-16), 1695-1711. https://doi.org/10.1016/S0013-7944(02)00058-9
  2. Aggelis, D.G., Verbruggen, S., Tsangouri, E., Tysmans, T. and Van Hemelrijck, D. (2016), "Monitoring the failure mechanisms of a reinforced concrete beam strengthened by textile reinforced cement using acoustic emission and digital image correlation", Int. J. Smart Struct. Syst., 17(1), 91-105. https://doi.org/10.12989/sss.2016.17.1.091
  3. Bergonnier, S., Hild, F. and Roux, S. (2005), "Digital image correlation used for mechanical tests on crimped glass wool samples", J. Strain Anal. Eng. De., 40(2), 185-197. https://doi.org/10.1243/030932405X7773
  4. Caduff, D. and Van Mier, J.G.M. (2010), "Analysis of compressive fracture of three different concretes by means of 3D-digital image correlation and vacuum impregnation", Cement Concrete Compos., 32(4), 281-290. https://doi.org/10.1016/j.cemconcomp.2010.01.003
  5. Canadinc, D., Efstathiou, C. and Sehitoglu, H. (2008). "On the negative strain rate sensitivity of Hadfield steel", Scripta Mater., 59(10), 1103-1106. https://doi.org/10.1016/j.scriptamat.2008.07.027
  6. Canal, L.P., Gonzalez, C., Molina-Aldareguia, J.M., Segurado, J. and Lorca, J. (2012), "Application of digital image correlation at the microscale in fiber-reinforced composites", Compos.: Part A, 43(10), 1630-1638. https://doi.org/10.1016/j.compositesa.2011.07.014
  7. Chakinala, S. (2013), "A study of algorithms based on digital image correlation for embedding in a full-field displacement sensor with subpixel resolution", M.Sc. Dissertation, The University of Akron, Ohio, USA, 134p.
  8. Chu, C., Ranson, W.F., Sutton, M.A. and Peters, W.H. (1985), "Applications of digital-image correlation techniques to experimental mechanics", Experimental Mech., 25(3), 232-244. https://doi.org/10.1007/BF02325092
  9. Cintron, R. and Saouma, V. (2008), "Strain measurements with the digital image correlation system vic-2D", Center for Fast Hybrid Testing Report, Department of Civil, Environmental and Architectural Engineering, University of Colorado, USA, Sept., 23p.
  10. Cofaru, C., Philips, W. and Paepegem, W.V. (2010), "Improved Newton-Raphson digital image correlation method for full-field displacement and strain calculation", Appl. Opt., 49(33), 6472-6484. https://doi.org/10.1364/AO.49.006472
  11. Dehnavi, M.Y., Khaleghian, S., Emami, A., Tehrani, M. and Soltani, N. (2014), "Utilizing digital image correlation to determine stress intensity factors", Polym. Test., 37, 28-35. https://doi.org/10.1016/j.polymertesting.2014.04.005
  12. Dilibal, S. (2013), "Investigation of nucleation and growth of detwinning mechanism in martensitic single crystal NiTi using digital image correlation", Metallogr. Microstruct. Anal., 2(4), 242-248. https://doi.org/10.1007/s13632-013-0083-7
  13. Efstathiou, C. and Sehitoglu, H. (2010). "Strain hardening and heterogeneous deformation during twinning in Hadfield steel", Acta Mater., 58(5), 1479-1488. https://doi.org/10.1016/j.actamat.2009.10.054
  14. Felekoglu, B., Tosun-Felekoglu, K., Ranade, R., Zhang, Q. and Li, V.C. (2014), "Influence of matrix flowability, fiber mixing procedure, and curing conditions on the mechanical performance of HTPP-ECC", Compos., Part B: Eng., 60, 359-370. https://doi.org/10.1016/j.compositesb.2013.12.076
  15. Gencturk, B., Hossain, K., Kapadia, A., Labi,b E. and Mo, Y.L. (2014), "Use of digital image correlation technique in full-scale testing of prestressed concrete structures", Measurement, 47, 505-515. https://doi.org/10.1016/j.measurement.2013.09.018
  16. Ghorbani, R., Matta, F. and Sutton, M.A. (2015), "Full-field deformation measurement and crack mapping on confined masonry walls using digital image correlation", Experimental Mech., 55(1), 227-243. https://doi.org/10.1007/s11340-014-9906-y
  17. Godara, A. and Raabe, D. (2007). "Influence of fiber orientation on global mechanical behavior and mesoscale strain localization in a short glass-fiber-reinforced epoxy polymer composite during tensile deformation investigated using digital image correlation", Compos. Sci. Tech., 67(11-12), 2417-2427. https://doi.org/10.1016/j.compscitech.2007.01.005
  18. Hild, F., Raka, B., Baudequin, M., Roux, S. and Cantelaube, F. (2002), "Multiscale displacement field measurements of compressed mineral-wool samples by digital image correlation", Appl. Opt., 41(32), 6815-28. https://doi.org/10.1364/AO.41.006815
  19. Hild, F. and Roux, S. (2006), "Measuring stress intensity factors with a camera: Integrated digital image correlation (I-DIC)", C. R. Mecanique, 334(1), 8-12. https://doi.org/10.1016/j.crme.2005.11.002
  20. Ikai, S., Reichert, J.R., Vasconcellos, A.R. and Zampieri, V.A. (2006), "Asbestos-free technology with new high tenacity PP-Polypropylene fibers in air-cured hatschek process", Proceedings of the 10th. Int. Inorganic-Bonded Fiber Composites Conference (IIBCC), Universidade de Sao Paulo & University of Idaho: Sao Paulo, Brazil, 33-48.
  21. Jerabek, M., Major, Z. and Lang, R.W. (2010), "Strain determination of polymeric materials using digital image correlation", Polym. Test., 29(3), 407-416. https://doi.org/10.1016/j.polymertesting.2010.01.005
  22. JSCE (2008), "Recommendations for design and construction of high performance fiber reinforced cement composites with multiple fine cracks (HPFRCC)", Concrete Committee, Rokugo K. (chair), Japan Society of Civil Engineers, March, 212.
  23. Kashfuddoja, M., Prasath, R.G.R. and Ramji, M. (2014), "Study on experimental characterization of carbon fiber reinforced polymer panel using digital image correlation: A sensitivity analysis", Opt. Laser. Eng., 62, 17-30. https://doi.org/10.1016/j.optlaseng.2014.04.019
  24. Leplay, P., Rethore, J., Meille, S. and Baietto, M.C. (2010), "Damage law identification of a quasi brittle ceramic from a bending test using digital image correlation", J. Eur. Ceramic Society, 30(13), 2715-2725. https://doi.org/10.1016/j.jeurceramsoc.2010.05.021
  25. Li, V.C. and Herbert, E.N. (2012), "Robust self-healing concrete for sustainable infrastructure", J. Adv. Concrete Tech., 10(6), 207-218. https://doi.org/10.3151/jact.10.207
  26. Li, V.C. (2012), "Tailoring ECC for special attributes: a review", Int. J. Concrete Struct. Mater., 6(3), 135-144. https://doi.org/10.1007/s40069-012-0018-8
  27. Li, V.C., Wang, S. and Wu, C. (2001), "Tensile strain-hardening behavior of PVA-ECC", ACI Mater. J., 98(6), 483-492.
  28. Lin, Z., Kanda, T. and Li, V.C. (1999), "On interface property characterization and performance of fiber reinforced cementitious composites", J. Concrete Sci. Eng., 1, 173-184.
  29. Liu, Y., Cho, S., Spencer, B.F. and Fan J. (2014), "Automated assessment of cracks on concrete surfaces using adaptive digital image processing", Int. J. Smart Struct. Syst., 14(4), 719-741. https://doi.org/10.12989/sss.2014.14.4.719
  30. Malesa, M., Malowany, K., Tomczak, U., Siwek, B., Kujawinska, M. and Sieminska-Lewandowska, A. (2013), "Application of 3D digital image correlation in maintenance and process control in industry", Comput. Ind., 64(9), 1301-1315. https://doi.org/10.1016/j.compind.2013.03.012
  31. Ohno, M. and Li, V.C. (2014), "A feasibility study of strain hardening fiber reinforced fly ash-based geopolymer composites", Constr. Build. Mater., 57, 163-168. https://doi.org/10.1016/j.conbuildmat.2014.02.005
  32. Pan, B., Wu, D. and Xia, Y. (2012). "An active imaging digital image correlation method for deformation measurement insensitive to ambient light", Opt. Laser Tech., 44(1), 204-209. https://doi.org/10.1016/j.optlastec.2011.06.019
  33. Pan, B., Xie, H., Wang, Z., Qian, K. and Wang, Z. (2008), "Study on subset size selection in digital image correlation for speckle patterns", Opt. Society America, Opt. Express, 16(10), 7037-7048.
  34. Passieux, J.C. and Perie, J.N. (2012), "High resolution digital image correlation using proper generalized decomposition: PGD-DIC", Int. J. Numer. Method. Eng., 92(6), 531-550. https://doi.org/10.1002/nme.4349
  35. Ranade, R., Zhang, J., Lynch, J.P. and Li, V.C. (2014), "Influence of micro-cracking on the composite resistivity of Engineered Cementitious Composites", Cement Concrete Res., 58, 1-12. https://doi.org/10.1016/j.cemconres.2014.01.002
  36. Roux, S., Rethore, J. and Hild, F. (2009), "Digital image correlation and fracture: an advanced technique for estimating stress intensity factors of 2D and 3D cracks", J. Phys. D: Appl. Phys., 42, 1-21.
  37. Shah, S.G. and Kishen, J.M.C. (2011), "Fracture properties of concrete-concrete interfaces using digital image correlation", Experimental Mech., 51(3), 303-313. https://doi.org/10.1007/s11340-010-9358-y
  38. Shih, M.H. and Sung, W.P. (2013), "Application of digital image correlation method for analysing crack variation of reinforced concrete beams", Sadhana, 38(4), 723-741. https://doi.org/10.1007/s12046-013-0141-5
  39. Sutton, M.A., Orteu, J.J. and Schreier, H. (2009), Image Correlation for Shape, Motion and Deformation Measurements. Basic Concepts,Theory and Applications, Springer, Verlag, USA.
  40. Sutton, M.A., Wolters, W.J., Peters, W.H., Ranson, W.F. and Mc.Neill, S.R. (1983), "Determination of displacements using an improved digital correlation method", Image Vision Comput., 1(3), 133-139. https://doi.org/10.1016/0262-8856(83)90064-1
  41. Sutton, M.A., Yan, J.H., Tiwari, V., Schreier, H.W. and Orteu, J.J. (2008), "The effect of out-of-plane motion on 2D and 3D digital image correlation measurements", Opt. Laser. Eng., 46(10), 746-757. https://doi.org/10.1016/j.optlaseng.2008.05.005
  42. Sahmaran M. and Li, V.C. (2009). "Durability properties of micro-cracked ECC containing high volumes fly ash", Cement Concrete Res., 39(11), 1033-1043. https://doi.org/10.1016/j.cemconres.2009.07.009
  43. Sahmaran, M., Yildirim, G. and Erdem, T.K. (2013), "Self-healing capability of cementitious composites incorporating different supplementary cementitious materials", Cement Concrete Compos., 35(1), 89-101. https://doi.org/10.1016/j.cemconcomp.2012.08.013
  44. Tao, G. and Xia, Z. (2005), "A non-contact real-time strain measurement and control system for multiaxial cyclic/fatigue tests of polymer materials by digital image correlation method", Polym. Test., 24(7), 844-855. https://doi.org/10.1016/j.polymertesting.2005.06.013
  45. Tung, S.H., Shih, M.H. and Sung, W.P. (2008), "Development of digital image correlation method to analyse crack variations of masonry wall", Sadhana, 33(6), 767-779. https://doi.org/10.1007/s12046-008-0033-2
  46. Tung, S.H. and Sui, C.H. (2010), "Application of digital-image-correlation techniques in analysing cracked cylindrical pipes", Sadhana, 35(5), 557-567. https://doi.org/10.1007/s12046-010-0039-4
  47. Wang, K., Jansen, D.C., Shah, S.P. and Karr, A.F. (2007), "Permeability study of cracked concrete", Cement Concrete Res., 27(3), 381-393. https://doi.org/10.1016/S0008-8846(97)00031-8
  48. Wang, Y. and Cuitino, A.M. (2002), "Full-field measurements of heterogeneous deformation patterns on polymeric foams using digital image correlation", Int. J. Solid. Struct., 39(13-14), 3777-3796. https://doi.org/10.1016/S0020-7683(02)00176-2
  49. Willems, A., Lomov, S.V., Verpoest, I. and Vandepitte, D. (2009), "Drape-ability characterization of textile composite reinforcements using digital image correlation", Opt. Laser.n Eng., 47(3-4), 343-351. https://doi.org/10.1016/j.optlaseng.2008.03.012
  50. Wu, Z.M., Rong, H., Zheng, J.J., Xu, F. and Dong, W. (2011), "An experimental investigation on the FPZ properties in concrete using digital image correlation technique", Eng. Fract. Mech., 78(17), 2978-2990. https://doi.org/10.1016/j.engfracmech.2011.08.016
  51. Yang, E.H. (2007), "Designing added functions in engineered cementitious composites", Ph.D. Dissertation, The University of Michigan, USA, 276p.
  52. Yaofeng, S. and Pang, J.H.L. (2007), "Study of optimal subset size in digital image correlation of speckle pattern images", Opt. Laser. Eng., 45(9), 967-974. https://doi.org/10.1016/j.optlaseng.2007.01.012

Cited by

  1. Computer modeling of crack propagation in concrete retaining walls: A case study vol.19, pp.5, 2016, https://doi.org/10.12989/cac.2017.19.5.509
  2. Relations between rheological and mechanical properties of fiber reinforced mortar vol.20, pp.4, 2016, https://doi.org/10.12989/cac.2017.20.4.449
  3. Tensile strain-hardening behaviors and crack patterns of slag-based fiber-reinforced composites vol.21, pp.3, 2018, https://doi.org/10.12989/cac.2018.21.3.231
  4. ÇİMENTO ESASLI LİFLİ KOMPOZİTLERİN DİJİTAL GÖRÜNTÜ KORELASYONU YÖNTEMİ İLE ÇOKLU ÇATLAK DAVRANIŞININ İ vol.2018, pp.2018, 2016, https://doi.org/10.17341/gazimmfd.416508
  5. Experimental and Theoretical Analysis of Stress Superposition in Double-Hole Blasts vol.48, pp.5, 2019, https://doi.org/10.1520/jte20180093
  6. Numerical and experimental study on flexural behavior of reinforced concrete beams: Digital image correlation approach vol.24, pp.6, 2019, https://doi.org/10.12989/cac.2019.24.6.561