참고문헌
- Akin M. (2013), "Slope stability problems and back analysis in heavily jointed rock mass: a case study from Manisa, Turkey", Rock Mech. Rock Eng., 46(2), 359-371. https://doi.org/10.1007/s00603-012-0262-x
- ASTM (1971), "Standard method of test for splitting tensile resistance of cylindrical concrete specimens", ASTM designation C496-71.
- ASTM (1986), "Test method for unconfined compressive resistance of intact rock core specimens", ASTM designation, 2938-86.
- Bobet, A. and Einstein, H.H. (1998), "Fracture coalescence in rock-type materials under uniaxial and biaxial compression", Int. J. Rock Mech. Min. Sci., 35(7), 863-888. https://doi.org/10.1016/S0148-9062(98)00005-9
- Brown, E.T. and Trollop, D.H. (1970), "Resistance of a model of jointed rock", J. Soil Mech. Found. Engrg, Proc., 96, 685-704.
- Duzgun, H.S.B. and Bhasin, R.K. (2009), "Probabilistic stability evaluation of Oppstadhornet rock slope", Norway. Rock Mech. Rock Eng., 42(5), 729-749. https://doi.org/10.1007/s00603-008-0011-3
- Einstein, H.H., Veneziano, D., Baecher, G.B. and O'reilly, K.J. (1983), "The effect of discontinuity persistence on rock slope stability", Int. J. Rock Mech. Min. Sci. Geomech. Abst., 20(5), 227-236. https://doi.org/10.1016/0148-9062(83)90003-7
- Gao,Y., Wu, D., Zhang, F., Lei, G.H., Qin, H. and Qiu, Y. (2016), "Limit analysis of 3D rock slope stability with non-linear failure criterion", Geomech. Eng., 10(1), 59-76. https://doi.org/10.12989/gae.2016.10.1.059
- Gehle, C. and Kutter, H.K. (2003), "Breakage and shear behaviour of intermittent rock joints", Int. J. Rock Mech. Min. Sci., 40(5), 687-700. https://doi.org/10.1016/S1365-1609(03)00060-1
- Ghazvinian, A., Nikudel, M.R. and Sarfarazi, V. (2007), "Effect of rock bridge continuity and area on shear behavior of joints", Proceedings of the 11th Congress of the International Society for Rock Mechanics, 1, 247, CRC Press.
- Gischig, V., Amann, F., Moore, J.R., Loew, S., Eisenbeiss, H. and Stempfhuber, W. (2011), "Composite rock slope kinematics at the current Randa instability, Switzerland, based on remote sensing and numerical modeling", Eng. Geol., 118(1), 37-53. https://doi.org/10.1016/j.enggeo.2010.11.006
- Grenon, M. and Hadjigeorgiou, J. (2008), "A design methodology for rock slopes susceptible to wedge failure using fracture system modelling", Eng. Geol., 96(1), 78-93. https://doi.org/10.1016/j.enggeo.2007.10.002
- Haeri, H. (2015a), "Influence of the inclined edge notches on the shear-fracture behavior in edge-notched beam specimens", Comput. Concrete, 16(4), 605-623. https://doi.org/10.12989/cac.2015.16.4.605
- Haeri, H. (2015b), "Experimental crack analyses of concrete-like CSCBD specimens using a higher order DDM", Comput. Concrete, 16(6), 881-896. https://doi.org/10.12989/cac.2015.16.6.881
- Haeri, H. and Marji, M.F. (2016), "Simulating the crack propagation and cracks coalescence underneath TBM disc cutters", Arab. J. Geosci., 9(2), 1-10. https://doi.org/10.1007/s12517-015-2098-7
- Haeri, H. and Sarfarazi, V. (2016), "The effect of micro pore on the characteristics of crack tip plastic zone in concrete", Comput. Concrete, 17(1), 107-127. https://doi.org/10.12989/cac.2016.17.1.107
- Jaeger, J.C. (1971), "Friction of rocks and stability of rock slopes", Geotech., 21(2), 97-134. https://doi.org/10.1680/geot.1971.21.2.97
- Ladanyi, B. and Archambault, G. (1980), Direct and indirect determination of shear resistance of rock mass, AIME Annual Meeting, Las Vegas, 80-25.
- Lajtai, E.Z. (1969), "Resistance of discontinuous rocks in direct shear", Geotech., 19, 218-233. https://doi.org/10.1680/geot.1969.19.2.218
- Li, D., Zhou, C., Lu, W. and Jiang, Q. (2009), "A system reliability approach for evaluating stability of rock wedges with correlated failure modes", Comput. Geotech., 36(8), 1298-1307. https://doi.org/10.1016/j.compgeo.2009.05.013
- Li, L.C., Tang, C.A., Zhu, W.C. and Liang, Z.Z. (2009), "Numerical analysis of slope stability based on the gravity increase method", Comput. Geotech., 36(7), 1246-1258. https://doi.org/10.1016/j.compgeo.2009.06.004
- Li, Y.P., Chen, L.Z. and Wang, Y.H. (2005), "Experimental research on pre-Cracked marble", Int. J. Solid. Struct., 42, 2505-2016. https://doi.org/10.1016/j.ijsolstr.2004.09.033
- Momber, A.W. and Kovacevic, R. (1997), "Test parameter analysis in abrasive water jet cutting of rocklike materials", Int. J. Rock Mech. Min. Sci., 34(1), 17-25. https://doi.org/10.1016/S1365-1609(97)80030-5
- Mughieda, O. and Alzo'ubi, A.K. (2004), "Fracture mechanisms of offset rock joints-A laboratory investigation", Geotech. Geol. Eng., 22(4), 545-562. https://doi.org/10.1023/B:GEGE.0000047045.89857.06
- Mughieda, O. and Karasneh, I. (2006), "Coalescence of offset rock joints under biaxial loading", Geotech. Geol. Eng., 24(4), 985-999. https://doi.org/10.1007/s10706-005-8352-0
- Mughieda, O.S. and Khawaldeh, I. (2004), "Scale effect on engineering properties of open non-persistent rock joints under uniaxial loading", Proceedings of the 7th Regional Rock Mechanics Symposium, Sivas, Turkiye.
- Naghadehi, M.Z., Jimenez, R., KhaloKakaie, R. and Jalali, S.M.E. (2011), "A probabilistic systems methodology to analyze the importance of factors affecting the stability of rock slopes", Eng. Geol., 118(3), 82-92. https://doi.org/10.1016/j.enggeo.2011.01.003
- Nelson, R. (1968), "Modeling a jointed rock mass", MS Thesis, Mass. Inst. Tech., Cambridge.
- Nelson, R.A. and Hirschfeld, R.C. (1968), "Modeling a jointed rock mass", Report R68-70, Mass. Inst. Tech., Cambridge.
- Pantelidis, L. (2011), "A critical review of highway slope instability risk assessment systems", B. Eng. Geol. Envir., 70(3), 395-400. https://doi.org/10.1007/s10064-010-0328-5
- Regmi AD, Yoshida K, Nagata H et al, 2013 The relationship between geology and rock weathering on the rock instability along Mugling-Narayanghat road corridor, Central Nepal Himalaya. Nat Hazards 66:501-532. https://doi.org/10.1007/s11069-012-0497-6
- Regmi, A.D., Yoshida, K., Nagata, H., Pradhan, A.M.S., Pradhan, B. and Pourghasemi, H.R. (2013), "The relationship between geology and rock weathering on the rock instability along Mugling-Narayanghat road corridor, Central Nepal Himalaya", Nat. Hazards, 66(2), 501-532. https://doi.org/10.1007/s11069-012-0497-6
- Reyes, O. and Einstein, H.H. (1991), "Failure mechanisms of fractured rock-a fracture coalescence model", Proceedings of the 7th ISRM Congress, Int. Soc. Rock Mech.
- Robertson, A.M. (1970), "The interpretation of geological factors for use in slope theory", Proceedings of the Planning Open Pit Mines, Johannesburg.
- Rosenblade, J.L. (1971), "Geomechanical model study of the failure modes of jointed rock masses", Ph.D Thesis, University of Illinois at Urbana-Champaign, Il, USA.
- Sharma, R.K., Mehta, B.S. and Jamwal, C.S. (2013), "Cut slope stability evaluation of NH-21 along Nalayan-Gambhrola section, Bilaspur district, Himachal Pradesh, India", Nat. Hazards, 66(2), 249-270. https://doi.org/10.1007/s11069-012-0469-x
- Shen, B., Stephansson, O., Einstein, H.H. and Ghahreman, B. (1995), "Coalescence of fractures under shear stresses in experiments", J. Geophy. Res., 100(6), 5975-5990. https://doi.org/10.1029/95JB00040
- Shen, B., Stephansson, O., Einstein, H.H. and Ghahreman, B. (1996), "Coalescence of fractures under shear stress experiments", J. Geophys. Res., 6, 5975-5990.
- Singh, T.N., Gulati, A., Dontha, L. and Bhardwaj, V. (2008), "Evaluating cut slope failure by numerical analysis-a case study", Nat. Hazards, 47(2), 263-279. https://doi.org/10.1007/s11069-008-9219-5
- Stimpson, B. (1970), "Modelling materials for engineering rock mechanics", Int. J. Rock Mech. Min. Sci. Geomech. Abst., 7(1), 77-121, Pergamon. https://doi.org/10.1016/0148-9062(70)90029-X
- Taheri, A. and Tani, K. (2010), "Assessment of the stability of rock slopes by the slope stability rating classification system", Rock Mech. Rock Eng., 43(3), 321-333. https://doi.org/10.1007/s00603-009-0050-4
- Takeuchi, K. (1991), "Mixed-mode fracture initiation in granular brittle materials", M.S. Thesis, Mass. Inst. Tech., Cambridge.
- Terzaghi, K. (1962), "Stability of steep slopes on hard unweathered rock", Geotech., 12(4), 251-270. https://doi.org/10.1680/geot.1962.12.4.251
- Zhang, H.Q., Zhao, Z.Y., Tang, C.A. and Song, L. (2006), "Numerical study of shear behavior of intermittent rock joints with different geometrical parameters", Int. J. Rock Mech. Min. Sci., 43(5), 802-816. https://doi.org/10.1016/j.ijrmms.2005.12.006
- Zhao, L.H., Cao, J., Zhang, Y. and Luo, Q. (2015), "Effect of hydraulic distribution on the stability of a plane slide rock slope under the nonlinear Barton-Bandis failure criterion", Geomech. Eng., 8(3), 391-414. https://doi.org/10.12989/gae.2015.8.3.391
피인용 문헌
- Effect of normal load on the crack propagation from pre-existing joints using Particle Flow Code (PFC) vol.19, pp.1, 2016, https://doi.org/10.12989/cac.2017.19.1.099
- Experimental and numerical study of shear crack propagation in concrete specimens vol.20, pp.1, 2016, https://doi.org/10.12989/cac.2017.20.1.057
- Experimental and numerical study of shear crack propagation in concrete specimens vol.20, pp.1, 2016, https://doi.org/10.12989/cac.2017.20.1.057
- The effect of compression load and rock bridge geometry on the shear mechanism of weak plane vol.13, pp.3, 2016, https://doi.org/10.12989/gae.2017.13.3.431
- A review paper about experimental investigations on failure behaviour of non-persistent joint vol.13, pp.4, 2017, https://doi.org/10.12989/gae.2017.13.4.535
- A fracture mechanics simulation of the pre-holed concrete Brazilian discs vol.66, pp.3, 2016, https://doi.org/10.12989/sem.2018.66.3.343
- Investigation of the model scale and particle size effects on the point load index and tensile strength of concrete using particle flow code vol.66, pp.4, 2016, https://doi.org/10.12989/sem.2018.66.4.445
- Investigation of the model scale and particle size effects on the point load index and tensile strength of concrete using particle flow code vol.66, pp.4, 2016, https://doi.org/10.12989/sem.2018.66.4.445
- Simulation of crack initiation and propagation in three point bending test using PFC2D vol.66, pp.4, 2016, https://doi.org/10.12989/sem.2018.66.4.453
- Simulation of the tensile failure behaviour of transversally bedding layers using PFC2D vol.67, pp.5, 2016, https://doi.org/10.12989/sem.2018.67.5.493
- Investigation of the effects of particle size and model scale on the UCS and shear strength of concrete using PFC2D vol.67, pp.5, 2016, https://doi.org/10.12989/sem.2018.67.5.505
- Investigation of the effects of particle size and model scale on the UCS and shear strength of concrete using PFC2D vol.67, pp.5, 2016, https://doi.org/10.12989/sem.2018.67.5.505
- The effect of ball size on the hollow center cracked disc (HCCD) in Brazilian test vol.22, pp.4, 2016, https://doi.org/10.12989/cac.2018.22.4.373
- The effect of ball size on the hollow center cracked disc (HCCD) in Brazilian test vol.22, pp.4, 2016, https://doi.org/10.12989/cac.2018.22.4.373
- PFC3D simulation of the effect of particle size on the single edge-notched rectangle bar in bending test vol.68, pp.4, 2016, https://doi.org/10.12989/sem.2018.68.4.497
- PFC3D simulation of the effect of particle size on the single edge-notched rectangle bar in bending test vol.68, pp.4, 2016, https://doi.org/10.12989/sem.2018.68.4.497
- Numerical simulation of the effect of bedding layer geometrical properties on the shear failure mechanism using PFC3D vol.22, pp.5, 2016, https://doi.org/10.12989/sss.2018.22.5.611
- Effect of transversely bedding layer on the biaxial failure mechanism of brittle materials vol.69, pp.1, 2016, https://doi.org/10.12989/sem.2019.69.1.011
- Numerical simulation of the effect of bedding layer on the tensile failure mechanism of rock using PFC2D vol.69, pp.1, 2019, https://doi.org/10.12989/sem.2019.69.1.043
- Simulation of the tensile behaviour of layered anisotropy rocks consisting internal notch vol.69, pp.1, 2016, https://doi.org/10.12989/sem.2019.69.1.051
- Numerical simulations of fracture shear test in anisotropy rocks with bedding layers vol.7, pp.4, 2016, https://doi.org/10.12989/acc.2019.7.4.241
- Numerical simulation of the effect of confining pressure and tunnel depth on the vertical settlement using particle flow code (with direct tensile strength calibration in PFC Modeling) vol.25, pp.4, 2020, https://doi.org/10.12989/sss.2020.25.4.433
- Numerical simulation and experimental investigation of the shear mechanical behaviors of non-persistent joint in new shear test condition vol.26, pp.3, 2020, https://doi.org/10.12989/cac.2020.26.3.239
- Numerical simulation and experimental investigation of the shear mechanical behaviors of non-persistent joint in new shear test condition vol.26, pp.3, 2020, https://doi.org/10.12989/cac.2020.26.3.239
- Study of tensile behavior of Y shape non-persistent joint using experimental test and numerical simulation vol.26, pp.6, 2016, https://doi.org/10.12989/cac.2020.26.6.565
- Study of tensile behavior of Y shape non-persistent joint using experimental test and numerical simulation vol.26, pp.6, 2016, https://doi.org/10.12989/cac.2020.26.6.565
- Physical test and PFC2D simulation of the failure mechanism of echelon joint under uniaxial compression vol.27, pp.2, 2021, https://doi.org/10.12989/cac.2021.27.2.099
- Physical test and PFC2D simulation of the failure mechanism of echelon joint under uniaxial compression vol.27, pp.2, 2021, https://doi.org/10.12989/cac.2021.27.2.099
- Relationship between point load index and mode II fracture toughness of granite vol.28, pp.1, 2021, https://doi.org/10.12989/cac.2021.28.1.025
- Z shape joints under uniaxial compression vol.12, pp.2, 2016, https://doi.org/10.12989/acc.2021.12.2.105
- Z shape joints under uniaxial compression vol.12, pp.2, 2016, https://doi.org/10.12989/acc.2021.12.2.105
- Influence of non-persistent joint sets on the failure behaviour of concrete under uniaxial compression test vol.28, pp.3, 2016, https://doi.org/10.12989/cac.2021.28.3.289