DOI QR코드

DOI QR Code

The effect of non-persistent joints on sliding direction of rock slopes

  • Sarfarazi, Vahab (Department of Mining Engineering, Hamedan University of Technology) ;
  • Haeri, Hadi (Department of Mining Engineering, Bafgh Branch, Islamic Azad University) ;
  • Khaloo, Alireza (Center of Excellence in Structure and Earthquake Engineering, Sharif University of Technology)
  • Received : 2016.02.10
  • Accepted : 2016.02.29
  • Published : 2016.06.25

Abstract

In this paper an approach was described for determination of direction of sliding block in rock slopes containing planar non-persistent open joints. For this study, several gypsum blocks containing planar non-persistent open joints with dimensions of $15{\times}15{\times}15cm$ were build. The rock bridges occupy 45, 90 and $135cm^2$ of total shear surface ($225cm^2$), and their configuration in shear plane were different. From each model, two similar blocks were prepared and were subjected to shearing under normal stresses of 3.33 and $7.77kg/cm^{-2}$. Based on the change in the configuration of rock-bridges, a factor called the Effective Joint Coefficient (EJC) was formulated, that is the ratio of the effective joint surface that is in front of the rock-bridge and the total shear surface. In general, the failure pattern is influenced by the EJC while shear strength is closely related to the failure pattern. It is observed that the propagation of wing tensile cracks or shear cracks depends on the EJC and the coalescence of wing cracks or shear cracks dominates the eventual failure pattern and determines the peak shear load of the rock specimens. So the EJC is a key factor to determine the sliding direction in rock slopes containing planar non-persistent open joints.

Keywords

References

  1. Akin M. (2013), "Slope stability problems and back analysis in heavily jointed rock mass: a case study from Manisa, Turkey", Rock Mech. Rock Eng., 46(2), 359-371. https://doi.org/10.1007/s00603-012-0262-x
  2. ASTM (1971), "Standard method of test for splitting tensile resistance of cylindrical concrete specimens", ASTM designation C496-71.
  3. ASTM (1986), "Test method for unconfined compressive resistance of intact rock core specimens", ASTM designation, 2938-86.
  4. Bobet, A. and Einstein, H.H. (1998), "Fracture coalescence in rock-type materials under uniaxial and biaxial compression", Int. J. Rock Mech. Min. Sci., 35(7), 863-888. https://doi.org/10.1016/S0148-9062(98)00005-9
  5. Brown, E.T. and Trollop, D.H. (1970), "Resistance of a model of jointed rock", J. Soil Mech. Found. Engrg, Proc., 96, 685-704.
  6. Duzgun, H.S.B. and Bhasin, R.K. (2009), "Probabilistic stability evaluation of Oppstadhornet rock slope", Norway. Rock Mech. Rock Eng., 42(5), 729-749. https://doi.org/10.1007/s00603-008-0011-3
  7. Einstein, H.H., Veneziano, D., Baecher, G.B. and O'reilly, K.J. (1983), "The effect of discontinuity persistence on rock slope stability", Int. J. Rock Mech. Min. Sci. Geomech. Abst., 20(5), 227-236. https://doi.org/10.1016/0148-9062(83)90003-7
  8. Gao,Y., Wu, D., Zhang, F., Lei, G.H., Qin, H. and Qiu, Y. (2016), "Limit analysis of 3D rock slope stability with non-linear failure criterion", Geomech. Eng., 10(1), 59-76. https://doi.org/10.12989/gae.2016.10.1.059
  9. Gehle, C. and Kutter, H.K. (2003), "Breakage and shear behaviour of intermittent rock joints", Int. J. Rock Mech. Min. Sci., 40(5), 687-700. https://doi.org/10.1016/S1365-1609(03)00060-1
  10. Ghazvinian, A., Nikudel, M.R. and Sarfarazi, V. (2007), "Effect of rock bridge continuity and area on shear behavior of joints", Proceedings of the 11th Congress of the International Society for Rock Mechanics, 1, 247, CRC Press.
  11. Gischig, V., Amann, F., Moore, J.R., Loew, S., Eisenbeiss, H. and Stempfhuber, W. (2011), "Composite rock slope kinematics at the current Randa instability, Switzerland, based on remote sensing and numerical modeling", Eng. Geol., 118(1), 37-53. https://doi.org/10.1016/j.enggeo.2010.11.006
  12. Grenon, M. and Hadjigeorgiou, J. (2008), "A design methodology for rock slopes susceptible to wedge failure using fracture system modelling", Eng. Geol., 96(1), 78-93. https://doi.org/10.1016/j.enggeo.2007.10.002
  13. Haeri, H. (2015a), "Influence of the inclined edge notches on the shear-fracture behavior in edge-notched beam specimens", Comput. Concrete, 16(4), 605-623. https://doi.org/10.12989/cac.2015.16.4.605
  14. Haeri, H. (2015b), "Experimental crack analyses of concrete-like CSCBD specimens using a higher order DDM", Comput. Concrete, 16(6), 881-896. https://doi.org/10.12989/cac.2015.16.6.881
  15. Haeri, H. and Marji, M.F. (2016), "Simulating the crack propagation and cracks coalescence underneath TBM disc cutters", Arab. J. Geosci., 9(2), 1-10. https://doi.org/10.1007/s12517-015-2098-7
  16. Haeri, H. and Sarfarazi, V. (2016), "The effect of micro pore on the characteristics of crack tip plastic zone in concrete", Comput. Concrete, 17(1), 107-127. https://doi.org/10.12989/cac.2016.17.1.107
  17. Jaeger, J.C. (1971), "Friction of rocks and stability of rock slopes", Geotech., 21(2), 97-134. https://doi.org/10.1680/geot.1971.21.2.97
  18. Ladanyi, B. and Archambault, G. (1980), Direct and indirect determination of shear resistance of rock mass, AIME Annual Meeting, Las Vegas, 80-25.
  19. Lajtai, E.Z. (1969), "Resistance of discontinuous rocks in direct shear", Geotech., 19, 218-233. https://doi.org/10.1680/geot.1969.19.2.218
  20. Li, D., Zhou, C., Lu, W. and Jiang, Q. (2009), "A system reliability approach for evaluating stability of rock wedges with correlated failure modes", Comput. Geotech., 36(8), 1298-1307. https://doi.org/10.1016/j.compgeo.2009.05.013
  21. Li, L.C., Tang, C.A., Zhu, W.C. and Liang, Z.Z. (2009), "Numerical analysis of slope stability based on the gravity increase method", Comput. Geotech., 36(7), 1246-1258. https://doi.org/10.1016/j.compgeo.2009.06.004
  22. Li, Y.P., Chen, L.Z. and Wang, Y.H. (2005), "Experimental research on pre-Cracked marble", Int. J. Solid. Struct., 42, 2505-2016. https://doi.org/10.1016/j.ijsolstr.2004.09.033
  23. Momber, A.W. and Kovacevic, R. (1997), "Test parameter analysis in abrasive water jet cutting of rocklike materials", Int. J. Rock Mech. Min. Sci., 34(1), 17-25. https://doi.org/10.1016/S1365-1609(97)80030-5
  24. Mughieda, O. and Alzo'ubi, A.K. (2004), "Fracture mechanisms of offset rock joints-A laboratory investigation", Geotech. Geol. Eng., 22(4), 545-562. https://doi.org/10.1023/B:GEGE.0000047045.89857.06
  25. Mughieda, O. and Karasneh, I. (2006), "Coalescence of offset rock joints under biaxial loading", Geotech. Geol. Eng., 24(4), 985-999. https://doi.org/10.1007/s10706-005-8352-0
  26. Mughieda, O.S. and Khawaldeh, I. (2004), "Scale effect on engineering properties of open non-persistent rock joints under uniaxial loading", Proceedings of the 7th Regional Rock Mechanics Symposium, Sivas, Turkiye.
  27. Naghadehi, M.Z., Jimenez, R., KhaloKakaie, R. and Jalali, S.M.E. (2011), "A probabilistic systems methodology to analyze the importance of factors affecting the stability of rock slopes", Eng. Geol., 118(3), 82-92. https://doi.org/10.1016/j.enggeo.2011.01.003
  28. Nelson, R. (1968), "Modeling a jointed rock mass", MS Thesis, Mass. Inst. Tech., Cambridge.
  29. Nelson, R.A. and Hirschfeld, R.C. (1968), "Modeling a jointed rock mass", Report R68-70, Mass. Inst. Tech., Cambridge.
  30. Pantelidis, L. (2011), "A critical review of highway slope instability risk assessment systems", B. Eng. Geol. Envir., 70(3), 395-400. https://doi.org/10.1007/s10064-010-0328-5
  31. Regmi AD, Yoshida K, Nagata H et al, 2013 The relationship between geology and rock weathering on the rock instability along Mugling-Narayanghat road corridor, Central Nepal Himalaya. Nat Hazards 66:501-532. https://doi.org/10.1007/s11069-012-0497-6
  32. Regmi, A.D., Yoshida, K., Nagata, H., Pradhan, A.M.S., Pradhan, B. and Pourghasemi, H.R. (2013), "The relationship between geology and rock weathering on the rock instability along Mugling-Narayanghat road corridor, Central Nepal Himalaya", Nat. Hazards, 66(2), 501-532. https://doi.org/10.1007/s11069-012-0497-6
  33. Reyes, O. and Einstein, H.H. (1991), "Failure mechanisms of fractured rock-a fracture coalescence model", Proceedings of the 7th ISRM Congress, Int. Soc. Rock Mech.
  34. Robertson, A.M. (1970), "The interpretation of geological factors for use in slope theory", Proceedings of the Planning Open Pit Mines, Johannesburg.
  35. Rosenblade, J.L. (1971), "Geomechanical model study of the failure modes of jointed rock masses", Ph.D Thesis, University of Illinois at Urbana-Champaign, Il, USA.
  36. Sharma, R.K., Mehta, B.S. and Jamwal, C.S. (2013), "Cut slope stability evaluation of NH-21 along Nalayan-Gambhrola section, Bilaspur district, Himachal Pradesh, India", Nat. Hazards, 66(2), 249-270. https://doi.org/10.1007/s11069-012-0469-x
  37. Shen, B., Stephansson, O., Einstein, H.H. and Ghahreman, B. (1995), "Coalescence of fractures under shear stresses in experiments", J. Geophy. Res., 100(6), 5975-5990. https://doi.org/10.1029/95JB00040
  38. Shen, B., Stephansson, O., Einstein, H.H. and Ghahreman, B. (1996), "Coalescence of fractures under shear stress experiments", J. Geophys. Res., 6, 5975-5990.
  39. Singh, T.N., Gulati, A., Dontha, L. and Bhardwaj, V. (2008), "Evaluating cut slope failure by numerical analysis-a case study", Nat. Hazards, 47(2), 263-279. https://doi.org/10.1007/s11069-008-9219-5
  40. Stimpson, B. (1970), "Modelling materials for engineering rock mechanics", Int. J. Rock Mech. Min. Sci. Geomech. Abst., 7(1), 77-121, Pergamon. https://doi.org/10.1016/0148-9062(70)90029-X
  41. Taheri, A. and Tani, K. (2010), "Assessment of the stability of rock slopes by the slope stability rating classification system", Rock Mech. Rock Eng., 43(3), 321-333. https://doi.org/10.1007/s00603-009-0050-4
  42. Takeuchi, K. (1991), "Mixed-mode fracture initiation in granular brittle materials", M.S. Thesis, Mass. Inst. Tech., Cambridge.
  43. Terzaghi, K. (1962), "Stability of steep slopes on hard unweathered rock", Geotech., 12(4), 251-270. https://doi.org/10.1680/geot.1962.12.4.251
  44. Zhang, H.Q., Zhao, Z.Y., Tang, C.A. and Song, L. (2006), "Numerical study of shear behavior of intermittent rock joints with different geometrical parameters", Int. J. Rock Mech. Min. Sci., 43(5), 802-816. https://doi.org/10.1016/j.ijrmms.2005.12.006
  45. Zhao, L.H., Cao, J., Zhang, Y. and Luo, Q. (2015), "Effect of hydraulic distribution on the stability of a plane slide rock slope under the nonlinear Barton-Bandis failure criterion", Geomech. Eng., 8(3), 391-414. https://doi.org/10.12989/gae.2015.8.3.391

Cited by

  1. Effect of normal load on the crack propagation from pre-existing joints using Particle Flow Code (PFC) vol.19, pp.1, 2016, https://doi.org/10.12989/cac.2017.19.1.099
  2. Experimental and numerical study of shear crack propagation in concrete specimens vol.20, pp.1, 2016, https://doi.org/10.12989/cac.2017.20.1.057
  3. Experimental and numerical study of shear crack propagation in concrete specimens vol.20, pp.1, 2016, https://doi.org/10.12989/cac.2017.20.1.057
  4. The effect of compression load and rock bridge geometry on the shear mechanism of weak plane vol.13, pp.3, 2016, https://doi.org/10.12989/gae.2017.13.3.431
  5. A review paper about experimental investigations on failure behaviour of non-persistent joint vol.13, pp.4, 2017, https://doi.org/10.12989/gae.2017.13.4.535
  6. A fracture mechanics simulation of the pre-holed concrete Brazilian discs vol.66, pp.3, 2016, https://doi.org/10.12989/sem.2018.66.3.343
  7. Investigation of the model scale and particle size effects on the point load index and tensile strength of concrete using particle flow code vol.66, pp.4, 2016, https://doi.org/10.12989/sem.2018.66.4.445
  8. Investigation of the model scale and particle size effects on the point load index and tensile strength of concrete using particle flow code vol.66, pp.4, 2016, https://doi.org/10.12989/sem.2018.66.4.445
  9. Simulation of crack initiation and propagation in three point bending test using PFC2D vol.66, pp.4, 2016, https://doi.org/10.12989/sem.2018.66.4.453
  10. Simulation of the tensile failure behaviour of transversally bedding layers using PFC2D vol.67, pp.5, 2016, https://doi.org/10.12989/sem.2018.67.5.493
  11. Investigation of the effects of particle size and model scale on the UCS and shear strength of concrete using PFC2D vol.67, pp.5, 2016, https://doi.org/10.12989/sem.2018.67.5.505
  12. Investigation of the effects of particle size and model scale on the UCS and shear strength of concrete using PFC2D vol.67, pp.5, 2016, https://doi.org/10.12989/sem.2018.67.5.505
  13. The effect of ball size on the hollow center cracked disc (HCCD) in Brazilian test vol.22, pp.4, 2016, https://doi.org/10.12989/cac.2018.22.4.373
  14. The effect of ball size on the hollow center cracked disc (HCCD) in Brazilian test vol.22, pp.4, 2016, https://doi.org/10.12989/cac.2018.22.4.373
  15. PFC3D simulation of the effect of particle size on the single edge-notched rectangle bar in bending test vol.68, pp.4, 2016, https://doi.org/10.12989/sem.2018.68.4.497
  16. PFC3D simulation of the effect of particle size on the single edge-notched rectangle bar in bending test vol.68, pp.4, 2016, https://doi.org/10.12989/sem.2018.68.4.497
  17. Numerical simulation of the effect of bedding layer geometrical properties on the shear failure mechanism using PFC3D vol.22, pp.5, 2016, https://doi.org/10.12989/sss.2018.22.5.611
  18. Effect of transversely bedding layer on the biaxial failure mechanism of brittle materials vol.69, pp.1, 2016, https://doi.org/10.12989/sem.2019.69.1.011
  19. Numerical simulation of the effect of bedding layer on the tensile failure mechanism of rock using PFC2D vol.69, pp.1, 2019, https://doi.org/10.12989/sem.2019.69.1.043
  20. Simulation of the tensile behaviour of layered anisotropy rocks consisting internal notch vol.69, pp.1, 2016, https://doi.org/10.12989/sem.2019.69.1.051
  21. Numerical simulations of fracture shear test in anisotropy rocks with bedding layers vol.7, pp.4, 2016, https://doi.org/10.12989/acc.2019.7.4.241
  22. Numerical simulation of the effect of confining pressure and tunnel depth on the vertical settlement using particle flow code (with direct tensile strength calibration in PFC Modeling) vol.25, pp.4, 2020, https://doi.org/10.12989/sss.2020.25.4.433
  23. Numerical simulation and experimental investigation of the shear mechanical behaviors of non-persistent joint in new shear test condition vol.26, pp.3, 2020, https://doi.org/10.12989/cac.2020.26.3.239
  24. Numerical simulation and experimental investigation of the shear mechanical behaviors of non-persistent joint in new shear test condition vol.26, pp.3, 2020, https://doi.org/10.12989/cac.2020.26.3.239
  25. Study of tensile behavior of Y shape non-persistent joint using experimental test and numerical simulation vol.26, pp.6, 2016, https://doi.org/10.12989/cac.2020.26.6.565
  26. Study of tensile behavior of Y shape non-persistent joint using experimental test and numerical simulation vol.26, pp.6, 2016, https://doi.org/10.12989/cac.2020.26.6.565
  27. Physical test and PFC2D simulation of the failure mechanism of echelon joint under uniaxial compression vol.27, pp.2, 2021, https://doi.org/10.12989/cac.2021.27.2.099
  28. Physical test and PFC2D simulation of the failure mechanism of echelon joint under uniaxial compression vol.27, pp.2, 2021, https://doi.org/10.12989/cac.2021.27.2.099
  29. Relationship between point load index and mode II fracture toughness of granite vol.28, pp.1, 2021, https://doi.org/10.12989/cac.2021.28.1.025
  30. Z shape joints under uniaxial compression vol.12, pp.2, 2016, https://doi.org/10.12989/acc.2021.12.2.105
  31. Z shape joints under uniaxial compression vol.12, pp.2, 2016, https://doi.org/10.12989/acc.2021.12.2.105
  32. Influence of non-persistent joint sets on the failure behaviour of concrete under uniaxial compression test vol.28, pp.3, 2016, https://doi.org/10.12989/cac.2021.28.3.289