DOI QR코드

DOI QR Code

국내 저주파수 무작위 지진잡음의 특성 연구

Characteristics of Low-frequency Ambient Seismic Noise in South Korea

  • Park, Iseul (Department of Geophysics, Kangwon National University) ;
  • Kim, Ki Young (Department of Geophysics, Kangwon National University) ;
  • Byu, Joongmoo (Department of Earth Resources and Environmental Engineering, Hanyang University)
  • 투고 : 2016.02.23
  • 심사 : 2016.04.28
  • 발행 : 2016.05.31

초록

저주파 (${\leq}5Hz$) 무작위 지진잡음의 시공간적 변화 특성을 밝히기 위하여, 국내 지표 가속도 관측소에서 2014년도 1년간 기록된 자료를 저주파(< 1 Hz)와 고주파(${\geq}1Hz$) 성분으로 분리한 후, 평균제곱근 진폭과 파워 스펙트럼 밀도를 계산하였다. 지진잡음은 주로 섬과 해안가 관측소에서 크게 기록되었으며, 고주파 성분은 내륙의 대도시 지역에서도 큰 진폭으로 관찰되었다. 고주파 성분은 야간시간대보다 주간시간대에 약 34% 크고, 일요일 및 명절연휴에는 평일보다 감소하여 인간 활동과 밀접한 연관이 있는 것으로 분석된다. 저주파 성분은 일변화 및 주간변화가 뚜렷하지 않지만, 겨울철에 크게 기록되어 계절별 차이를 보인다. 유의파고와도 높은 상관성을 보여 바다 등 주로 자연적 기작에 의해 발생된 것으로 해석된다. 또한 저주파 성분의 진폭은 태풍 중심까지의 거리에 따라 지수함수 형태로 감소하며, 지수 -0.76은 표면파뿐만 아니라 실체파 성분도 함께 포함되어 있을 가능성을 제시한다. 파워 스펙트럼 밀도의 정곡 주파수는 이중주파수 범위에 해당하는 0.34 Hz 정도로, 뚜렷한 시간적 변화를 보이지 않는다.

To investigate spatial and temporal variations of low-frequency (${\leq}5Hz$) ambient seismic noise, we analyzed the noise data recorded for one whole year of 2014 at surface accelerometer stations in South Korea. After decomposed into low-frequency (LF; < 1 Hz) and high-frequency (HF; ${\geq}1Hz$) components, the root-mean-squared (RMS) amplitudes and power spectral densities (PSD) of the noise data were computed. The RMS amplitudes were larger on islands and near-shore stations, but also large RMS amplitudes were observed at inland stations in large cities only for HF components. The RMS amplitudes of HF components were larger in the daytime than at nighttime and during weekdays than on Sunday and holidays. This indicates the HF components are closely related to human activities. On the contrary, daily and weekly variations were not clear in the LF components while they showed seasonal variations with its maximum during the winter and a good correlation with significant wave height. Therefore, we interpret the mechanism of LF components is closely related to natural phenomena such as sea. The amplitude of LF components decreased as an exponential function of the distance to the center of typhoons. The exponential index of -0.76 suggested that ambient seismic noise included both surface and body waves. Peak frequencies of the PSD curves were near 0.34 Hz indicating the double frequency. No temporal variation in the peak frequency was clearly noticed.

키워드

참고문헌

  1. Cho, B.-J., Sheen, D.-H., Jo, B.-G. Park, S.-C., and Hwang, E.-H., 2009, Development of a standard background noise model for broadband seismic stations of KMA, Journal of the Geological Society of Korea, 45, 127-141.
  2. Davy, C., Barruol, G., Fontaine, F. R., Sigloch, K., and Stutzmann, E., Tracking major storms from microseismic and hydroacoustic observations on the seafloor, Geophysical Research Letters, 41, 8825-8831.
  3. Draganov, D., Wapenaar, K., Mulder, W., Singer, J., and Verdel, A., 2007, Retrieval of reflections from seismic backgroundnoise measurements, Geophysical Research Letters, 34, doi:10.1029/2006GL028735.
  4. Ebeling, C. W. and Stein, S., Seismological identification and characterization of a large hurricane, Bulletin of the Seismological Society of America, 101, 399-403.
  5. Friedrich, A., Krüger, F., and Klinge, K., 1998, Ocean-generated microseismic noise located with the Gräfenberg array, Journal of Seismology, 2, 47-64. https://doi.org/10.1023/A:1009788904007
  6. Gerstoft, P., Shearer, P. M., Harmon, N., and Zhang, J., 2008, Global P, PP, and PKP wave microseisms observed from distant storms, Geophysical Research Letters, 35, doi:10.1029/2008GL036111.
  7. Gilmore, M. H. and Hubert, W. E., 1948, Microseisms and Pacific typhoons, Bulletin of the Seismological Society of America, 38, 195-228.
  8. Gutenberg, B., 1947, Microseisms and weather forecasting. Journal of Meteorology, 4, 21-28. https://doi.org/10.1175/1520-0469(1947)004<0021:MAWF>2.0.CO;2
  9. Hong, M. H. and Kim, K. Y., 2010, H/V Spectral-ratio Analysis of Microtremors in Jeju Island, Geophysics and Geophysical Exploration, 13, 114-152.
  10. Kang, T.-S. and Shin, J. S., 2006, Surface-wave tomography from ambient seismic noise of accelerograph networks in southern Korea, Geophysical Research Letters, 33, doi:10.1029/2006GL027044.
  11. Kim, J. K., 2006, Analysis of site amplification characteristics of several seismic stations distributed in the Southern Korean peninsula, Journal of Korean Society of Rack Mechanics, 6, 486-494.
  12. Kim, K. Y. and Hong, M. H., 2012, Shear-wave velocity structure of Jeju Island, Korea, Geosciences Journal, 16, 35-45. https://doi.org/10.1007/s12303-012-0004-9
  13. Kim, K. Y. and Park, Y.-G., 2015, Microtremor response of the Cheongcheon dam in Korea, Exploration Geophysics, http://dx.doi.org/10.1071/EG15019.
  14. Kim, S. K., Nam, S.-T., and Ryoo, Y. G., 2004, Characteristics of the background noise of seismograph stations in Korea, Journal of the Geological Society of Korea, 40, 515-536.
  15. Kim, S. Y. and Kim S. K., 2009, Characteristics of Site Amplification of the broad-band seismic stations in Korea, Journal of Korean Earth Science Society, 30, 810-823. https://doi.org/10.5467/JKESS.2009.30.7.810
  16. Koper, K. D. and Burlacu, R., 2015, The fine structure of double-frequency microseisms recorded by seismometers in North America, Journal of Geophysical Research: Solid Earth, 120, 1677-1691.
  17. Koper, K. D., Seats, K., and Benz, H., 2010, On the composition of Earth's short-period seismic noise field, Bulletin of the Seismological Society of America, 100, 606-617. https://doi.org/10.1785/0120090120
  18. Landès, M., Hubans, F., Shapiro, N. M., Paul, A., and Campillo, M., 2010, Origin of deep ocean microseisms by using teleseismic body waves, Journal of Geophysical Research:Solid Earth, 115, doi:10.1029/2009JB006918.
  19. Lee, S.-J., Rhie, J., Kim, S., Kang, T.-S., and Kim, G. B., 2015, Ambient seismic noise tomography of the southern East Sea (Japan Sea) and the Korea Strait, Geosciences Journal, 19, 709-720. https://doi.org/10.1007/s12303-015-0012-7
  20. Lee, W.-D., Jo, B.-G., Schwab, F., and Jun, S.-B., 2012, Typhoongenerated microseisms observed from the short-period KSRS array, Geosciences Journal, 16, 447-454. https://doi.org/10.1007/s12303-012-0039-y
  21. Lin, J.-Y., Lee, T.-C., Hsieh, H.-S., Chen, Y.-F., Lin, Y.-C., Lee, H.-H., and Wen, Y.-Y., 2014, A study of microseisms induced by typhoon Nanmadol using ocean-bottom seismometers, Bulletin of the Seismological Society of America, 104, doi:10.1785/0120130237.
  22. Liner, C. L., Elements of 3D seismology, 2nd Ed., PennWell Books.
  23. Longuet-Higgins, M. S., 1950, A theory of the origin of microseisms, philosophical transactions, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 243, 1-35. https://doi.org/10.1098/rsta.1950.0012
  24. McNamara, D. E. and Boaz, R. I., 2005, Seismic noise analysis system, power spectral density probability density function:stand-alone software package, U.S. Geological Survey openfile No. 2005-1438.
  25. McNamara, D. E. and Buland, R. P., 2004, Ambient noise levels in the continental United States, Bulletin of the Seismological Society of America, 94, 1517-1527. https://doi.org/10.1785/012003001
  26. National Climate Data Service System (NCDSS), 2015, Surface Observation, http://sts.kma.go.kr/jsp/home/contents/main/main.do (accessed September 30, 2015).
  27. National Institute of Informatics (NII), 2015, 2014 Typhoon information, http://agora.ex.nii.ac.jp/-kitamoto/ (accessed September 30, 2015).
  28. National Institute of Meteorological Sciences (NIMS), 2007, Development of earthquake monitoring environment and tsunami forecasting technique in Korea Peninsula, research report, 4-17p.
  29. National Typhoon Center (NTC), 2015, 2014 Typhoon Analysis Report, http://typ.kma.go.kr/index.jsp (accessed September 30, 2015).
  30. Peterson, J., 1993, Observations and modeling of seismic background noise, U.S. Geological Survey, Open-File Report 93-322.
  31. Poli, P., Campillo, M., Pedersen, H., and LAPNET Working Group, 2012 Body-wave imaging of Earth's mantle discontinuities from ambient seismic noise, Science, 338, 1063-1065. https://doi.org/10.1126/science.1228194
  32. Roux, P., Sabra, K. G., Gersotoft, P., and Kuperman, W. A., 2005, P-wave from cross-correlation of seismic noise, Geophysical Research Letters, 32, doi:10.1029/2005GL023803.
  33. Sabra, K. G., Gerstoft, P., Roux, P., Kuperman, W. A., and Fehler, M. C., 2005a, Extracting time-domain Green's function estimates form ambient seismic noise, Geophysical Research Letters, 32, doi:10.1029/2004GL021862.
  34. Sabra, K. G., Gerstoft, P., Roux, P., Kuperman, W. A., and Fehler, M. C., 2005b, Surface wave tomography from microseisms in Southern California, Geophysical Research Letters, 32, doi:110.1029/2005GL023155.
  35. Shapiro, N. M. and Campillo, M., 2004, Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise, Geophysical Research Letters, 31, doi:10.1029/2004GL019491.
  36. Shapiro, N. M., Campillo, M., Stehly, L., and Ritzwoller, M. H., 2005, High-resolution surface wave tomography from ambient seismic noise, Science, 307, 1615-1618. https://doi.org/10.1126/science.1108339
  37. Sheen, D.-H., 2014, Microseisms from huge Indian Ocean storms in May 2007, Geosciences Journal, 18, 347-354. https://doi.org/10.1007/s12303-013-0068-1
  38. Sheen, D.-H. and Shin, J. S., 2010, Earthquake detection thresholds of broadband seismic networks in South Korea considering background seismic noise levels, Journal of the Geological Society of Korea, 46, 31-38.
  39. Sheen, D.-H. and Shin, J. S., 2016, Observation of continuous microseismic P waves in Asia, Journal of Geophysical Research: Solid Earth, 121, 248-259. https://doi.org/10.1002/2015JB012420
  40. Sheen, D.-H., Shin, J. S., and Kang, T.-S., 2009, Seismic noise level variation in South Korea, Geosciences Journal, 13, 183-190. https://doi.org/10.1007/s12303-009-0018-0
  41. Tanimoto, T., Heki, K., and Artru-Lambin, J., 2015, Interaction of solid Earth, atmosphere, and ionosphere, Treatise on Geophysics, 4, 421-443.
  42. Toksöz, M. N. and Lacoss, R. T., 1968, Microseisms: Mode structure and sources, Science, 159, 872-873. https://doi.org/10.1126/science.159.3817.872
  43. Vinnik, L. P., 1973, Sources of microseismic P waves, Pure and Applied Geophysics, 103, 282-289. https://doi.org/10.1007/BF00876404
  44. Witek, M., van der Lee, S., and Kang, T.-S., 2014, Rayleigh wave group velocity distributions for East Asia using ambient seismic noise, Geophysical Research Letters, 41, 8045-8052. https://doi.org/10.1002/2014GL062016
  45. Young, C. J., Chael, E. P., Withers, M. M., and Aster, R. C., 1996, A comparision of the high-frequency (> 1 Hz) surface and subsurface noise environment at three sites in the United States, Bulletin of the Seismological Society of America, 86, 1516-1528.
  46. Yun, W. Y., Park, S.-C., and Kim, K. Y., 2013, Comparison of background noise characteristics between surface and borehole station of Hwacheon, Geophysics and Geophysical Exploration, 16, 203-210. https://doi.org/10.7582/GGE.2013.16.4.203
  47. Zheng, S., Sun, X., Song, X., Yang, Y., and Ritzwoller, M. H., 2008, Surface wave tomography of China from ambient seismic noise cross correlation, Geochemistry, Geophysics, Geosystems, 9, doi:10.1029/2008GC001981.