References
-
P. G. Bruce, S. A. Freunberger, L. J. Hardwick, and J.-M. Tarascon, "
$Li-O_2$ and Li-S Batteries with High Energy Storage," Nat. Mater., 11 [1] 19-29 (2011). https://doi.org/10.1038/nmat3191 -
R. Black, B. Adams, and L. F. Nazar, "Non-Aqueous and Hybrid
$Li-O_2$ Batteries," Adv. Energy Mater., 2 [7] 801-15 (2012). https://doi.org/10.1002/aenm.201200001 - J. Christensen, P. Albertus, R. S. Sanchez-Carrera, T. Lohmann, B. Kozinsky, R. Liedtke, J. Ahmed, and A. Kojic, "A Critical Review of Li/Air Batteries," J. Electrochem. Soc., 159 [2] R1-30 (2012). https://doi.org/10.1149/2.086202jes
- A. C. Luntz and B. D. McCloskey, "Nonaqueous Li-Air Batteries: A Status Report," Chem. Rev., 114 [23] 11721-50 (2014). https://doi.org/10.1021/cr500054y
-
Y. Lu, D. G. Kwabi, K. P. C. Yao, J. R. Harding, J. Zhou, L. Zuin, and Y. Shao-Horn, "The Discharge Rate Capability of Rechargeable
$Li-O_2$ Batteries," Energy Environ. Sci., 4 [8] 2999-3007 (2011). https://doi.org/10.1039/c1ee01500a -
S. S. Zhang, D. Foster, and J. Read, "Discharge Characteristic of A Non-Aqueous Electrolyte
$Li/O_2$ Battery," J. Power Sources, 195 [4] 1235-40 (2010). https://doi.org/10.1016/j.jpowsour.2009.08.088 -
A. Dobart, A. J. Paterson, J. Bao, and P. G. Bruce, "
${\alpha}-MnO_2$ Nanowires: A Catalyst for the$O_2$ Electrode in Rechargeable Lithium Batteries," Angew. Chemie Int. Ed., 47 [24] 4521-24 (2008). https://doi.org/10.1002/anie.200705648 -
A. Debart, J. Bao, G. Armstrong, and P. G. Bruce, "An
$O_2$ Cathode for Rechargeable Lithium Batteries: The Effect of A Catalyst," J. Power Sources, 174 [2] 1177-11 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.180 -
Z. Peng, S. A. Freunberger, Y. Chen, and P. G. Bruce, "Reversible and Higher-Rate
$Li-O_2$ Battery," Science, 337 [6094] 563-66 (2012). https://doi.org/10.1126/science.1223985 - G. Girishkumar, B. McCloskey, A. C. Luntz, S. Swanson, and W. Wilcke, "Lithium-Air Battery: Promise and Challenges," J. Phys. Chem. Lett., 1 [14] 2193-203 (2010). https://doi.org/10.1021/jz1005384
- Y. Shao, S. Park, J. Xiao, J.-G. Zhang, Y. Wang, and J. Liu, "Electrocatalysts for Nonaqueous Lithium-Air Batteries: Status, Challenges, and Perspective," ACS Catal., 2 [5] 844-57 (2012). https://doi.org/10.1021/cs300036v
- D. B. Meadowcroft, "Low-Cost Oxygen Electrode Material," Nature, 226 [5248] 847-48 (1970). https://doi.org/10.1038/226847a0
- J. O. Bockris and T. Otagawa, "The Electrocatalysis of Oxygen Evolution on Perovskites," J. Electrochem. Soc., 131 [2] 290-302 (1984). https://doi.org/10.1149/1.2115565
- J. Suntivich, H. A. Gasteiger, N, Yabuuchi, H. Nakanishi, J. B. Goodenough, and Y. Shao-Horn, "Design Principles for Oxygen-Reduction Activity on Perovskite Oxide Catalysts for Fuel Cells and Metal-Air Batteries," Nat. Chem., 3 [7] 546-50 (2011). https://doi.org/10.1038/nchem.1069
- J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough, and Y. Shao-Horn, "A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles," Science, 334 [6061] 1383-85 (2011). https://doi.org/10.1126/science.1212858
-
J.-J. Xu, D. Xu, Z.-L. Wang, H.-G. Wang, L.-L. Zhang, and X.-B. Zhang, "Synthesis of Perovskite-Based Porous
$La_{0.75}Sr_{0.25}MnO_3$ Nanotubes as A Highly Efficient Electrocatalyst for Rechargeable Lithium-Oxygen Batteries," Angew. Chemie Int. Ed., 52 [14] 3887-90 (2013). https://doi.org/10.1002/anie.201210057 -
Z. Fu, X. Lin, T. Huang, and A. Yu, "Nano-Sized
$La_{0.8}Sr_{0.2}MnO_3$ as Oxygen Reduction Catalyst in Nonaqueous$Li/O_2$ Batteries," J. Solid State Electrochem., 16 [4] 1447-52 (2012). https://doi.org/10.1007/s10008-011-1467-8 -
J.-J. Xu, Z.-L. Wang, D. Xu, F.-Z. Meng, and X.-B. Zhang, "3D Ordered Macroporous
$LaFeO_3$ as Efficient Electrocatalyst for$Li-O_2$ Batteries with Enhanced Rate Capability and Cyclic Performance," Energy Environ. Sci., 7 [7] 2213-19 (2014). https://doi.org/10.1039/c3ee42934b -
Y. Zhao, L. Xu, L. Mai, C. Han, Q. An, X. Xu, X. Liu, and Q. Zhang, "Hierarchical Mesoporous Perovskite
$La_{0.5}Sr_{0.5}CoO_{2.91}$ Nanowires with Ultrahigh Capacity for Li-Air Batteries," Proc. Natl. Acad. Sci., 109 [48] 19569-74 (2012). https://doi.org/10.1073/pnas.1210315109 - J. K. Norskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, and T. Bligaard, "Origin of the Overpotential for Oxygen Reduction at A Fuel-Cell Cathode," J. Phys. Chem. B, 108 [46] 17886-92 (2004). https://doi.org/10.1021/jp047349j
- I. C. Man, H. -Y. Su,. F. Calle-Vallejo, H. A. Hansen, J. I. Martinez, N. G. Inoglu, J. Kitchin, T. F. Jaramillo, and J. K. Norskov, "Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces," ChemCatChem, 3 [7] 1159-65 (2011). https://doi.org/10.1002/cctc.201000397
-
R. Choi, J. Jung, G. Kim, K. Song, Y.-I. Kim, S. C. Jung, Y.-K. Han, H. Song, and Y.-M. Kang, "Ultra-Low Overpotential and High Rate Capability in
$Li-O_2$ Batteries Through Surface Atom Arrangement of PdCu Nanocatalysts," Energy Environ. Sci., 7 [4] 1362-68 (2014). https://doi.org/10.1039/c3ee43437k - B. G. Kim, H.-J. Kim, S. Back, K. W. Nam, Y. Jung, Y.-K. Han, and J. W. Choi, "Improved Reversibility in Lithium-oxygen Battery: Understanding Elementary Reactions and Surface Charge Engineering of Metal Alloy Catalyst," Sci. Rep., 4 4225 (2014).
- N. B. Halck, V. Petrykin, P. Krtil, and J. Rossmeisl, "Beyond the Volcano Limitations in Electrocatalysis - Oxygen Evolution Reaction," Phys. Chem. Chem. Phys., 16 [27] 13682-88 (2014). https://doi.org/10.1039/c4cp00571f
- P. Liao, J. A. Keith, and E. A. Carter, "Water Oxidation on Pure and Doped Hematite (0001) Surfaces: Prediction of Co and Ni as Effective Dopants for Electrocatalysis," J. Am. Chem. Soc., 134 [32] 13296-309 (2012). https://doi.org/10.1021/ja301567f
- Z. Xu and J. R. Kitchin, "Relationships between the Surface Electronic and Chemical Properties of Doped 4d and 5d Late Transition Metal Dioxides," J. Chem. Phys., 142 [10] 104703-11 (2015). https://doi.org/10.1063/1.4914093
- G. Kresse and J. Furthmuller, "Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-wave Basis Set," Phys. Rev. B, 54 [16] 11169-86 (1996) https://doi.org/10.1103/PhysRevB.54.11169
- G. Kresse and J. Furthmuller, "Efficiency of Ab-initio Total Energy Calculations for Metals and Semiconductors Using a Plane-wave Basis Set," Comput. Mater. Sci., 6 [1] 15-50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
- J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple," Phys. Rev. Lett., 77 [18] 3865-68 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, "Electron-Energy-Loss Spectra and the Structural Stability of Nickel Oxide: An LSDA+U Study," Phys. Rev. B, 57 [3] 1505-9 (1998). https://doi.org/10.1103/PhysRevB.57.1505
- L. Wang, T. Maxisch, and G. Ceder, "Oxidation Energies of Transition Metal Oxides within the GGA+U Framework," Phys. Rev. B, 73 [19] 195107 (2006). https://doi.org/10.1103/PhysRevB.73.195107
- H. J. Monkhorst and J. D. Pack, "Special Points for Brillouin- Zone Integrations," Phys. Rev. B, 13 [12] 5188-92 (1976). https://doi.org/10.1103/PhysRevB.13.5188
- G. Makov and M. Payne, "Periodic Boundary Conditions in ab initio Calculations," Phys. Rev. B, 51 [7] 4014-22 (1995). https://doi.org/10.1103/PhysRevB.51.4014
- D. S. Sholl and J. A. Steckel, Density Functional Theory: A Practical Introduction; pp. 94-97, John Wiley & Sons, Inc., Hoboken, New Jersey, 2009.
-
L. Andrews, "Infrared Spectrum, Structure, Vibrational Potential Function, and Bonding in the Lithium Superoxide Molecule
$LiO_2$ ," J. Chem. Phys., 50 [10] 4288-99 (1969). https://doi.org/10.1063/1.1670893 - R. F. W. Bader, "Atoms in Molecules," Acc. Chem. Res., 18 [1] 9-15 (1985). https://doi.org/10.1021/ar00109a003
- W. Tang, E. Sanville, and G. Henkelman, "A Grid-Based Bader Analysis Algorithm without Lattice Bias," J. Phys. Condens. Matter, 21 [8] 084204 (2009). https://doi.org/10.1088/0953-8984/21/8/084204
- G. K. P. Dathar, W. A. Shelton, and Y. Xu, "Trends in the Catalytic Activity of Transition Metals for the Oxygen Reduction Reaction by Lithium," J. Phys. Chem. Lett., 3 [7] 891-95 (2012). https://doi.org/10.1021/jz300142y
-
J. W. Han and B. Yildiz, "Enhanced One Dimensional Mobility of Oxygen on Strained
$LaCoO_3(001)$ Surface," J. Mater. Chem, 21 [47] 18983-90 (2011). https://doi.org/10.1039/c1jm12830b -
W. Yang, Z. Wang, Z. Yang, C. Xia, R. Peng, X. Wu, and Y. Lu, "Enhanced Catalytic Activity toward
$O_2$ Reduction on Pt-Modified$La_{1-x}Sr_xCo_{1-y}Fe_yO_{3-{{\delta}}$ Cathode: A Combination Study of First-Principles Calculation and Experiment," ACS Appl. Mater. Interfaces, 6 [23] 21051-59 (2014) https://doi.org/10.1021/am505900g -
Y. A. Mastrikov, R. Merkle, E. Heifets, E. A. Kotomin, and J. Maier, "Pathways for Oxygen Incorporation in Mixed Conducting Perovskites: A DFT-Based Mechanistic Analysis for (La, Sr)
$MnO_{3-{\delta}}$ ," J. Phys. Chem. C, 114 [7] 3017-27 (2010). https://doi.org/10.1021/jp909401g -
Y. -L. Lee, J. Kleis, J. Rossmeisl and D. Morgan, "Ab initio Energetics of
$LaBO_3(001)$ (B = Mn, Fe, Co and Ni) for Solid Oxide Fuel Cell Cathodes," Phys. Rev. B, 80 [22] 224101-20 (2009). https://doi.org/10.1103/PhysRevB.80.224101 -
Y. Xu and W. A. Shelton, "
$O_2$ Reduction by Lithium on Au(111) and Pt(111)," J. Chem. Phys., 133 [2] 024703-9 (2010). https://doi.org/10.1063/1.3447381
Cited by
- Energy materials for energy conversion and storage: focus on research conducted in Korea vol.58, pp.6, 2016, https://doi.org/10.1007/s43207-021-00152-2