DOI QR코드

DOI QR Code

Investigation of LiO2 Adsorption on LaB1-xB'xO3(001) for Li-Air Battery Applications: A Density Functional Theory Study

  • Kwon, Hyunguk (Department of Chemical Engineering, University of Seoul) ;
  • Han, Jeong Woo (Department of Chemical Engineering, University of Seoul)
  • Received : 2016.04.12
  • Accepted : 2016.04.27
  • Published : 2016.05.31

Abstract

Li-air batteries have received much attention due to their superior theoretical energy density. However, their sluggish kinetics on the cathode side is considered the main barrier to high performance. The rational design of electrode catalysts with high activity is therefore an important challenge. To solve this issue, we performed density functional theory (DFT) calculations to analyze the adsorption behavior of the $LiO_2$ molecule, which is considered to be a key intermediate in both the Li-oxygen reduction reaction (ORR) and the evolution reaction (OER). Specifically, to use the activity descriptor approach, the $LiO_2$ adsorption energy, which has previously been demonstrated to be a reliable descriptor of the cathode reaction in Li-air batteries, was calculated on $LaB_{1-x}B^{\prime}_xO_3$(001) (B, B' = Mn, Fe, Co, and Ni, x = 0.0, 0.5). Our fast screening results showed that $LaMnO_3$, $LaMn_{0.5}Fe_{0.5}O_3$, or $LaFeO_3$ would be good candidate catalysts. We believe that our results will provide a way to more efficiently develop new cathode materials for Li-air batteries.

Keywords

References

  1. P. G. Bruce, S. A. Freunberger, L. J. Hardwick, and J.-M. Tarascon, "$Li-O_2$ and Li-S Batteries with High Energy Storage," Nat. Mater., 11 [1] 19-29 (2011). https://doi.org/10.1038/nmat3191
  2. R. Black, B. Adams, and L. F. Nazar, "Non-Aqueous and Hybrid $Li-O_2$ Batteries," Adv. Energy Mater., 2 [7] 801-15 (2012). https://doi.org/10.1002/aenm.201200001
  3. J. Christensen, P. Albertus, R. S. Sanchez-Carrera, T. Lohmann, B. Kozinsky, R. Liedtke, J. Ahmed, and A. Kojic, "A Critical Review of Li/Air Batteries," J. Electrochem. Soc., 159 [2] R1-30 (2012). https://doi.org/10.1149/2.086202jes
  4. A. C. Luntz and B. D. McCloskey, "Nonaqueous Li-Air Batteries: A Status Report," Chem. Rev., 114 [23] 11721-50 (2014). https://doi.org/10.1021/cr500054y
  5. Y. Lu, D. G. Kwabi, K. P. C. Yao, J. R. Harding, J. Zhou, L. Zuin, and Y. Shao-Horn, "The Discharge Rate Capability of Rechargeable $Li-O_2$ Batteries," Energy Environ. Sci., 4 [8] 2999-3007 (2011). https://doi.org/10.1039/c1ee01500a
  6. S. S. Zhang, D. Foster, and J. Read, "Discharge Characteristic of A Non-Aqueous Electrolyte $Li/O_2$ Battery," J. Power Sources, 195 [4] 1235-40 (2010). https://doi.org/10.1016/j.jpowsour.2009.08.088
  7. A. Dobart, A. J. Paterson, J. Bao, and P. G. Bruce, "${\alpha}-MnO_2$ Nanowires: A Catalyst for the $O_2$ Electrode in Rechargeable Lithium Batteries," Angew. Chemie Int. Ed., 47 [24] 4521-24 (2008). https://doi.org/10.1002/anie.200705648
  8. A. Debart, J. Bao, G. Armstrong, and P. G. Bruce, "An $O_2$ Cathode for Rechargeable Lithium Batteries: The Effect of A Catalyst," J. Power Sources, 174 [2] 1177-11 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.180
  9. Z. Peng, S. A. Freunberger, Y. Chen, and P. G. Bruce, "Reversible and Higher-Rate $Li-O_2$ Battery," Science, 337 [6094] 563-66 (2012). https://doi.org/10.1126/science.1223985
  10. G. Girishkumar, B. McCloskey, A. C. Luntz, S. Swanson, and W. Wilcke, "Lithium-Air Battery: Promise and Challenges," J. Phys. Chem. Lett., 1 [14] 2193-203 (2010). https://doi.org/10.1021/jz1005384
  11. Y. Shao, S. Park, J. Xiao, J.-G. Zhang, Y. Wang, and J. Liu, "Electrocatalysts for Nonaqueous Lithium-Air Batteries: Status, Challenges, and Perspective," ACS Catal., 2 [5] 844-57 (2012). https://doi.org/10.1021/cs300036v
  12. D. B. Meadowcroft, "Low-Cost Oxygen Electrode Material," Nature, 226 [5248] 847-48 (1970). https://doi.org/10.1038/226847a0
  13. J. O. Bockris and T. Otagawa, "The Electrocatalysis of Oxygen Evolution on Perovskites," J. Electrochem. Soc., 131 [2] 290-302 (1984). https://doi.org/10.1149/1.2115565
  14. J. Suntivich, H. A. Gasteiger, N, Yabuuchi, H. Nakanishi, J. B. Goodenough, and Y. Shao-Horn, "Design Principles for Oxygen-Reduction Activity on Perovskite Oxide Catalysts for Fuel Cells and Metal-Air Batteries," Nat. Chem., 3 [7] 546-50 (2011). https://doi.org/10.1038/nchem.1069
  15. J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough, and Y. Shao-Horn, "A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles," Science, 334 [6061] 1383-85 (2011). https://doi.org/10.1126/science.1212858
  16. J.-J. Xu, D. Xu, Z.-L. Wang, H.-G. Wang, L.-L. Zhang, and X.-B. Zhang, "Synthesis of Perovskite-Based Porous $La_{0.75}Sr_{0.25}MnO_3$ Nanotubes as A Highly Efficient Electrocatalyst for Rechargeable Lithium-Oxygen Batteries," Angew. Chemie Int. Ed., 52 [14] 3887-90 (2013). https://doi.org/10.1002/anie.201210057
  17. Z. Fu, X. Lin, T. Huang, and A. Yu, "Nano-Sized $La_{0.8}Sr_{0.2}MnO_3$ as Oxygen Reduction Catalyst in Nonaqueous $Li/O_2$ Batteries," J. Solid State Electrochem., 16 [4] 1447-52 (2012). https://doi.org/10.1007/s10008-011-1467-8
  18. J.-J. Xu, Z.-L. Wang, D. Xu, F.-Z. Meng, and X.-B. Zhang, "3D Ordered Macroporous $LaFeO_3$ as Efficient Electrocatalyst for $Li-O_2$ Batteries with Enhanced Rate Capability and Cyclic Performance," Energy Environ. Sci., 7 [7] 2213-19 (2014). https://doi.org/10.1039/c3ee42934b
  19. Y. Zhao, L. Xu, L. Mai, C. Han, Q. An, X. Xu, X. Liu, and Q. Zhang, "Hierarchical Mesoporous Perovskite $La_{0.5}Sr_{0.5}CoO_{2.91}$ Nanowires with Ultrahigh Capacity for Li-Air Batteries," Proc. Natl. Acad. Sci., 109 [48] 19569-74 (2012). https://doi.org/10.1073/pnas.1210315109
  20. J. K. Norskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, and T. Bligaard, "Origin of the Overpotential for Oxygen Reduction at A Fuel-Cell Cathode," J. Phys. Chem. B, 108 [46] 17886-92 (2004). https://doi.org/10.1021/jp047349j
  21. I. C. Man, H. -Y. Su,. F. Calle-Vallejo, H. A. Hansen, J. I. Martinez, N. G. Inoglu, J. Kitchin, T. F. Jaramillo, and J. K. Norskov, "Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces," ChemCatChem, 3 [7] 1159-65 (2011). https://doi.org/10.1002/cctc.201000397
  22. R. Choi, J. Jung, G. Kim, K. Song, Y.-I. Kim, S. C. Jung, Y.-K. Han, H. Song, and Y.-M. Kang, "Ultra-Low Overpotential and High Rate Capability in $Li-O_2$ Batteries Through Surface Atom Arrangement of PdCu Nanocatalysts," Energy Environ. Sci., 7 [4] 1362-68 (2014). https://doi.org/10.1039/c3ee43437k
  23. B. G. Kim, H.-J. Kim, S. Back, K. W. Nam, Y. Jung, Y.-K. Han, and J. W. Choi, "Improved Reversibility in Lithium-oxygen Battery: Understanding Elementary Reactions and Surface Charge Engineering of Metal Alloy Catalyst," Sci. Rep., 4 4225 (2014).
  24. N. B. Halck, V. Petrykin, P. Krtil, and J. Rossmeisl, "Beyond the Volcano Limitations in Electrocatalysis - Oxygen Evolution Reaction," Phys. Chem. Chem. Phys., 16 [27] 13682-88 (2014). https://doi.org/10.1039/c4cp00571f
  25. P. Liao, J. A. Keith, and E. A. Carter, "Water Oxidation on Pure and Doped Hematite (0001) Surfaces: Prediction of Co and Ni as Effective Dopants for Electrocatalysis," J. Am. Chem. Soc., 134 [32] 13296-309 (2012). https://doi.org/10.1021/ja301567f
  26. Z. Xu and J. R. Kitchin, "Relationships between the Surface Electronic and Chemical Properties of Doped 4d and 5d Late Transition Metal Dioxides," J. Chem. Phys., 142 [10] 104703-11 (2015). https://doi.org/10.1063/1.4914093
  27. G. Kresse and J. Furthmuller, "Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-wave Basis Set," Phys. Rev. B, 54 [16] 11169-86 (1996) https://doi.org/10.1103/PhysRevB.54.11169
  28. G. Kresse and J. Furthmuller, "Efficiency of Ab-initio Total Energy Calculations for Metals and Semiconductors Using a Plane-wave Basis Set," Comput. Mater. Sci., 6 [1] 15-50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
  29. J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple," Phys. Rev. Lett., 77 [18] 3865-68 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
  30. S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, "Electron-Energy-Loss Spectra and the Structural Stability of Nickel Oxide: An LSDA+U Study," Phys. Rev. B, 57 [3] 1505-9 (1998). https://doi.org/10.1103/PhysRevB.57.1505
  31. L. Wang, T. Maxisch, and G. Ceder, "Oxidation Energies of Transition Metal Oxides within the GGA+U Framework," Phys. Rev. B, 73 [19] 195107 (2006). https://doi.org/10.1103/PhysRevB.73.195107
  32. H. J. Monkhorst and J. D. Pack, "Special Points for Brillouin- Zone Integrations," Phys. Rev. B, 13 [12] 5188-92 (1976). https://doi.org/10.1103/PhysRevB.13.5188
  33. G. Makov and M. Payne, "Periodic Boundary Conditions in ab initio Calculations," Phys. Rev. B, 51 [7] 4014-22 (1995). https://doi.org/10.1103/PhysRevB.51.4014
  34. D. S. Sholl and J. A. Steckel, Density Functional Theory: A Practical Introduction; pp. 94-97, John Wiley & Sons, Inc., Hoboken, New Jersey, 2009.
  35. L. Andrews, "Infrared Spectrum, Structure, Vibrational Potential Function, and Bonding in the Lithium Superoxide Molecule $LiO_2$," J. Chem. Phys., 50 [10] 4288-99 (1969). https://doi.org/10.1063/1.1670893
  36. R. F. W. Bader, "Atoms in Molecules," Acc. Chem. Res., 18 [1] 9-15 (1985). https://doi.org/10.1021/ar00109a003
  37. W. Tang, E. Sanville, and G. Henkelman, "A Grid-Based Bader Analysis Algorithm without Lattice Bias," J. Phys. Condens. Matter, 21 [8] 084204 (2009). https://doi.org/10.1088/0953-8984/21/8/084204
  38. G. K. P. Dathar, W. A. Shelton, and Y. Xu, "Trends in the Catalytic Activity of Transition Metals for the Oxygen Reduction Reaction by Lithium," J. Phys. Chem. Lett., 3 [7] 891-95 (2012). https://doi.org/10.1021/jz300142y
  39. J. W. Han and B. Yildiz, "Enhanced One Dimensional Mobility of Oxygen on Strained $LaCoO_3(001)$ Surface," J. Mater. Chem, 21 [47] 18983-90 (2011). https://doi.org/10.1039/c1jm12830b
  40. W. Yang, Z. Wang, Z. Yang, C. Xia, R. Peng, X. Wu, and Y. Lu, "Enhanced Catalytic Activity toward $O_2$ Reduction on Pt-Modified $La_{1-x}Sr_xCo_{1-y}Fe_yO_{3-{{\delta}}$ Cathode: A Combination Study of First-Principles Calculation and Experiment," ACS Appl. Mater. Interfaces, 6 [23] 21051-59 (2014) https://doi.org/10.1021/am505900g
  41. Y. A. Mastrikov, R. Merkle, E. Heifets, E. A. Kotomin, and J. Maier, "Pathways for Oxygen Incorporation in Mixed Conducting Perovskites: A DFT-Based Mechanistic Analysis for (La, Sr)$MnO_{3-{\delta}}$," J. Phys. Chem. C, 114 [7] 3017-27 (2010). https://doi.org/10.1021/jp909401g
  42. Y. -L. Lee, J. Kleis, J. Rossmeisl and D. Morgan, "Ab initio Energetics of $LaBO_3(001)$ (B = Mn, Fe, Co and Ni) for Solid Oxide Fuel Cell Cathodes," Phys. Rev. B, 80 [22] 224101-20 (2009). https://doi.org/10.1103/PhysRevB.80.224101
  43. Y. Xu and W. A. Shelton, "$O_2$ Reduction by Lithium on Au(111) and Pt(111)," J. Chem. Phys., 133 [2] 024703-9 (2010). https://doi.org/10.1063/1.3447381

Cited by

  1. Energy materials for energy conversion and storage: focus on research conducted in Korea vol.58, pp.6, 2016, https://doi.org/10.1007/s43207-021-00152-2