Acknowledgement
Supported by : National Research Foundation of Korea (NRF)
References
- Ait Amar Meziane, M., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
- Ait Yahia, S., Ait Atmane, H., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., Int. J., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
- Bachir Bouiadjr, R., Bedia, E.A.A. and Tounsi, A. (2013), "Nonlinear thermal buckling behavior of functionally graded plates using an efficient sinusoidal shear deformation theory", Struct. Eng. Mech., Int. J., 48, 547-567. https://doi.org/10.12989/sem.2013.48.4.547
- Balamurugan, V., Ganapathi, M. and Patel, B.P. (1998), "Postbuckling behavior of anisotropic laminated composite plates due to shear loading", Defense Sci. J., 48(4), 433-440. https://doi.org/10.14429/dsj.48.3970
- Bathe, K.J. and Dvorkin, E.N. (1986), "A formulation of general shell elements-The use of mixed interpolation of tensorial components", Int. J. Numer. Method. Eng., 22(3), 697-722. https://doi.org/10.1002/nme.1620220312
- Bathe, K.J., Lee, P.S. and Hiller, J.F. (2003), "Towards improving the MITC9 shell element", Comput. Struct., 81(8-11), 477-489. https://doi.org/10.1016/S0045-7949(02)00483-2
- Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos.: Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
- Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088
- Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., Int. j., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
- Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., Int. J., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
- Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A. (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", Int. J. Comput. Method., 11(6), 1350082. https://doi.org/10.1142/S0219876213500825
- Bucalem, M.L. and Bathe, K.J. (1993), "Higher-order MITC general shell elements", Int. J. Numer. Method. Eng., 36(21), 3729-3754. https://doi.org/10.1002/nme.1620362109
- Chaiomphob, T., Kanok-Nukulchai, W. and Nishino, F. (1998), "An automatic arc-length control algorithm for tracing equilibrium paths of nonlinear structures", Struct. Eng. Earthq. Eng., JSCE, 5(1), 205-208.
- Draiche, K., Tounsi, A. and Khalfi, Y. (2014), "A trigonometric four variable plate theory for free vibration of rectangular composite plates with patch mass", Steel Compos. Struct., Int. J., 17(1), 69-81. https://doi.org/10.12989/scs.2014.17.1.069
- Gupta, A.K., Patel, B.P. and Nath, Y. (2014), "Postbuckling response of composite laminated plates with evolving damage", Int. J. Damage Mech., 23, 222-244. https://doi.org/10.1177/1056789513489322
- Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., Int. J., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
- Han, S.C., Kim, K.D. and Kanok-Nukulchai, W. (2004), "An element-based 9-node resultant shell element for large deformation analysis of laminated composite plates and shells", Struct. Eng. Mech., Int. J., 18(6), 807-829. https://doi.org/10.12989/sem.2004.18.6.807
- Han, S.C., Kanok-Nukulchai, W. and Park, W.T. (2011), "A refined finite element for first-order plate and shell analysis", Struct. Eng. Mech., Int. J., 40(2), 191-213. https://doi.org/10.12989/sem.2011.40.2.191
- Han, S.C., Park, W.T. and Jung, W.Y. (2015), "A four-variable refined plate theory for dynamic stability analysis of S-FGM plates based on physical neutral surface", Compos. Struct., 131, 1081-1089. https://doi.org/10.1016/j.compstruct.2015.06.025
- Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Bedia, E.A.A. (2014), "New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech. (ASCE), 140, 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
- Huang, H.C. (1989), Static and Dynamic Analysis of Plates and Shells, Springer-Verlag, London, UK.
- Huang, H.C. and Hinton, E. (1986), "A new nine node degenerated shell element with enhanced membrane and shear interpolation", Int. J. Numer. Method Eng., 22(1), 73-92. https://doi.org/10.1002/nme.1620220107
- Jones, R.M. (1973), "Buckling and vibration of unsymmetrically laminated cross-ply rectangular plates", AIAA, 11, 1626-1632. https://doi.org/10.2514/3.50660
- Jung, W.Y. and Han, S.C. (2013), "An 8-node shell element for non-linear analysis of shells using the refined combination of membrane and shear interpolation functions", Math. Problem. Eng., 2013, 1-16.
- Jung, W.Y. and Han, S.C. (2014), "Shear buckling responses of laminated composite shells using a modified 8-node ANS shell element", Compos. Struct., 109, 119-129. https://doi.org/10.1016/j.compstruct.2013.10.055
- Kanok-Nukulchai, W. (1979), "A simple and efficient finite element for general shell analysis", Int. J. Numer. Method Eng., 14(2), 179-200. https://doi.org/10.1002/nme.1620140204
- Kanok-Nukulchai, W., Taylor, R.L. and Hughes, T.J.R. (1981), "A large deformation formulation for shell analysis by finite element method", Comput. Struct., 13(1-3), 19-27. https://doi.org/10.1016/0045-7949(81)90105-X
- Kim, K.D. and Park, T.H. (2002), "An 8-node assumed strain element with explicit integration for isotropic and laminated composite shells", Struct. Eng. Mech., Int. J., 13(4), 1-18. https://doi.org/10.12989/sem.2002.13.1.001
- Kim, K.D., Lomboy, G.R. and Han, S.C. (2003), "A co-rotational 8-node assumed strain shell element for postbuckling analysis of laminated composite plates and shells", Computat. Mech., 30(4), 330-342. https://doi.org/10.1007/s00466-003-0415-6
- Kosteletos, S. (1992), "Shear buckling response of laminated plates", Compos. Struct., 20, 147-154. https://doi.org/10.1016/0263-8223(92)90021-4
- Kudva, N.J. (1979), "Postbuckling studies of curved laminated composite panels", Ph.D. Thesis; Virginia Polytechnic Institute and State University, VA, USA.
- Kumar, D. and Singh, S.B. (2010), "Postbuckling strengths of composite laminate with various shaped cutouts under in-plane shear", Compos. Struct., 92(12), 2966-2978. https://doi.org/10.1016/j.compstruct.2010.05.008
- Lakshminarayana, H.V. and Kailash, K. (1989), "A shear deformable curved shell element of quadrilateral shape", Comput. Struct., 33(4), 987-1001. https://doi.org/10.1016/0045-7949(89)90434-3
- Lee, S.J. and Kanok-Nukulchai, W. (1998), "A nine-node assumed strain finite element for largedeformation analysis of laminated shells", Int. J. Numer. Method Eng., 42(5), 777-798. https://doi.org/10.1002/(SICI)1097-0207(19980715)42:5<777::AID-NME365>3.0.CO;2-P
- Ma, H. and Kanok-Nukulchai, W. (1989), "On the application of assumed strained methods", Proceedings of the Second East Asia-Pacific Conference on Structural Engineering and Construction, Chiang Mai, Thailand, January.
- MacNeal, R.H. and Harder, R.L. (1985), "A proposed standard set of problems to test finite element accuracy", Finite Elem. Anal. Des., 1(1), 3-20. https://doi.org/10.1016/0168-874X(85)90003-4
- MacNeal, R.H. and Harder, R.L. (1992), "Eight nodes or nine?", Int. J. Numer. Method. Eng., 33(5), 1049-1058. https://doi.org/10.1002/nme.1620330510
- Mahi, A., Adda Bedia, E.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39, 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
- Reddy, J.N. (1984), "A simple higher order theory for laminated composite plates", J. Appl. Mech., ASME, 51, 745-752. https://doi.org/10.1115/1.3167719
- Tanov, R. and Tabiei, A. (2000), "Simple correction to the first-order shear deformation shell finite element formulations", Finite Elem. Anal. Des., 35, 189-197. https://doi.org/10.1016/S0168-874X(99)00069-4
- Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013), A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Technol., 24, 209-220. https://doi.org/10.1016/j.ast.2011.11.009
- Vinson, J.R. and Chou, T.W. (1975), Composite Materials and their Use in Structures, Applied Science Publishers Ltd., London, UK.
- Whitney, J.M. (1969a), "Bending-extensional coupling in laminated plates under transverse loading", J. Compos. Mater., 3, 20-28. https://doi.org/10.1177/002199836900300102
- Whitney, J.M. (1969b), "The effect of transverse shear deformation on the bending of laminated plates", J. Compos. Mater., 3, 534-547. https://doi.org/10.1177/002199836900300316
- Wilkins, D.J. and Olson, F. (1974), "Shear buckling of advanced composite curved panels", J. Experim. Mech., 14(8), 326-330.
- Zhang, Y. and Matthews, F.L. (1983a), "Initial buckling of curved panels of generally layered composite materials", Compos. Struct., 1, 3-30. https://doi.org/10.1016/0263-8223(83)90014-4
- Zhang, Y. and Matthews, F.L. (1983b), "Postbuckling behaviour of curved panels of generally layered composite materials", Compos. Struct., 1, 115-135. https://doi.org/10.1016/0263-8223(83)90008-9
- Zhang, Y. and Matthews, F.L. (1985), "Large deflection behavior of simply supported laminated panels under in-plane loading", J. Appl. Mech., ASME, 52(3), 553-558. https://doi.org/10.1115/1.3169100
- Zidi, M., Tounsi, A., Houari, M.S.A., Adda Bedia, E.A. and Anwar Beg, O. (2014), "Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory", Aerosp. Sci. Technol., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001
- Zienkiewicz, O.C. and Taylor, R.L. (2000), The Finite Element Method, Butterworth-Heinemann, London, UK.
Cited by
- Buckling analysis of laminated composite cylindrical shell subjected to lateral displacement-dependent pressure using semi-analytical finite strip method vol.22, pp.2, 2016, https://doi.org/10.12989/scs.2016.22.2.301
- Geometrically nonlinear analysis of FG doubly-curved and hyperbolical shells via laminated by new element vol.28, pp.3, 2016, https://doi.org/10.12989/scs.2018.28.3.389
- Mechanical analysis of functionally graded spherical panel resting on elastic foundation under external pressure vol.74, pp.2, 2016, https://doi.org/10.12989/sem.2020.74.2.297