References
- Akazawa, T. (1943), "New test method for evaluating internal stress due to compression of concrete (the splitting tension test) (part 1)", J. Japan Soc. Civil Eng., 29, 777-787.
- Aono, Y., Tani, K., Okada, T. and Sakai, M. (2012), "Failure mechanism of the specimen in the splitting tensile strength test", Proceedings of the 7th Asian Rock Mechanics Symposium, Seoul, South Korea, October, pp. 615-623.
- Ashour, H.A. (1988), "A compressive strength criterion for anisotropic rock materials", Can. Geotech. J., 25(2), 233-237. https://doi.org/10.1139/t88-027
- Barla, G. and Innaurato, N. (1973), "Indirect tensile testing of anisotropic rocks", Rock Mech. Rock Eng., 5(4), 215-230.
- Carneiro, F.L.L.B. (1943), "A new method to determine the tensile strength of concrete", Proceedings of the 5th Meeting of the Brazilian Association for Technical Rules, Brazil, September, pp. 126-129. [In Portuguese]
- Chen, R. and Stimpson, B. (1993), "Interpretation of indirect tensile strength when moduli of deformation in compression and in tension are different", Rock Mech. Rock Eng., 26(2), 183-189. https://doi.org/10.1007/BF01023622
- Emad, M.Z., Mitri, H. and Kelly C. (2015), "State-of-the-art review of backfill practices for sublevel stoping system", Int. J. Min. Reclam. Environ., 29(6), 544-556. DOI: 10.1080/17480930.2014.889363
- Erarslan, N. and Williams, D.J. (2012), "Experimental, numerical and analytical studies on tensile strength of rocks", Int. J. Rock Mech. Min. Sci., 49, 21-30. https://doi.org/10.1016/j.ijrmms.2011.11.007
- Erarslan, N., Liang, Z.Z. and Williams. D.J. (2012), "Experimental and Numerical Studies on Determination of Indirect Tensile Strength of Rocks", Rock Mech. Rock Eng., 45(5), 739-751. https://doi.org/10.1007/s00603-011-0205-y
- Fairbairn, E.M.R. and Ulm, J.F. (2002), "A tribute to Fernando L.L.B. Carneiro (1913-2001) Engineer and Scientist who invented the Brazilian Test", Mater. Struct., 35, 195-196.
- Fairhurst, C. (1964), "On the validity of the 'Brazilian' test for brittle materials", Int. J. Rock Mech. Min. Sci., 1(4), 535-546. https://doi.org/10.1016/0148-9062(64)90060-9
- Hobbs, D.W. (1964), "The tensile strength of rocks", Int. J. Rock Mech. Min. Sci., 1(3), 385-396. https://doi.org/10.1016/0148-9062(64)90005-1
- Hondros, G. (1959), "The evaluation of Poisson's ratio and the modulus of materials of a low tensile resistance by Brazilian (indirect tensile) test with particular reference to concrete", Aust. J. Appl. Sci., 10(3), 243-268.
- ISRM (1978), "International society for rock mechanics suggested methods for determining tensile strength of rock materials", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 15, 99-103. https://doi.org/10.1016/0148-9062(78)90003-7
- Jaeger, J.C. and Cook, N.G.W. (1976), Fundamentals of Rock Mechanics, Chapman and Hall, London, UK.
- Jianhong, Y. and Wu, F.Q. and Sun, J.Z. (2009), "Estimation of the tensile elastic modulus using Brazilian disc by applying diametrically opposed concentrated loads", Int. J. Rock Mech. Min. Sci., 46(3), 568-576. https://doi.org/10.1016/j.ijrmms.2008.08.004
- Kesimal, A., Yilmaz, E. and Ercikdi, B. (2004), "Evaluation of paste backfill mixtures consisting of sulphide-rich mill tailings and varying cement contents", Cement Concrete Res, 34(10), 1817-1822. https://doi.org/10.1016/j.cemconres.2004.01.018
- Komurlu, E. and Kesimal, A. (2012), "Jaw effects on indirect tensile strength test disc failure mechanism", Proceedings of the 7th Asian Rock Mechanics Symposium, Seoul, South Korea, October, pp. 624-637.
- Komurlu, E. and Kesimal, A. (2015a), "Evaluation of indirect tensile strength of rocks using different types of jaws", Rock Mech. Rock Eng., 48(4), 1723-1730. https://doi.org/10.1007/s00603-014-0644-3
- Komurlu, E. and Kesimal, A. (2015b), "Sulfide-rich mine tailings usage for short-term support purposes: An experimental study on paste backfill barricades", Geomech. Eng., Int. J., 9(2), 195-205. https://doi.org/10.12989/gae.2015.9.2.195
- Komurlu, E., Kesimal, A. and Ercikdi, B. (2013), "An investigation of uncemented paste backfill applicability", Proceedings of the 23th International Congress and Exhibition of Tukey (IMCET 2013), The Chamber of Mining Engineers of Turkey, Antalya, Turkey, April, pp. 1017-1024
- Komurlu, E., Kesimal, A. and Demir, S. (2015), "An experimental and numerical study on determination of indirect (Splitting) tensile strength of rocks under various load apparatus", Can. Geotech. J., 53(2), 360-372. DOI: 10.1139/cgj-2014-0356
- Kourkoulis, S.K. and Markides, C.F. (2012), "The Brazilian disc under parabolically varying load:Theoretical and experimental study of the displacement field", Int. J. Solid. Struct., 49(7-8), 959-972. https://doi.org/10.1016/j.ijsolstr.2011.12.013
- Kourkoulis, S.K., Markides, C.F. and Hemsley, J.A. (2013), "Frictional stresses at the disc-jaw interface during the standardized execution of the Brazilian disc test", Acta Mechanica, 224(2), 255-268. https://doi.org/10.1007/s00707-012-0756-3
- Krishnayya, A.V.G. and Eisenstein, Z. (1974), "Brazilian tensile test for soils", Can. Geotech. J., 11(4), 632-642. https://doi.org/10.1139/t74-064
- Li, L. and Aubertin, M. (2002), "A crack-induced stress approach to describe the tensile strength of transversely isotropic rocks", Can. Geotech. J., 39(1), 1-13. https://doi.org/10.1139/t01-069
- Markides, C.F. and Kourkoulis, S.K. (2013), "Naturally accepted boundary conditions for the Brazilian Disc Test and the corresponding stress field", Rock Mech. Rock Eng., 46(5), 959-980. https://doi.org/10.1007/s00603-012-0351-x
- Markides, C.F., Pazis, D.N. and Kourkoulis, S.K. (2010), "Closed Full-Field Solutions for Stresses and Displacements in the Brazilian Disc under Distributed Radial Load", Int. J. Rock Mech. Min. Sci., 47(2), 227-237. https://doi.org/10.1016/j.ijrmms.2009.11.006
- Markides, C.F., Pazis, D.N. and Kourkoulis, S.K. (2012), "The Brazilian disc under non-uniform distribution of radial pressure and friction", Int. J. Rock Mech. Min. Sci., 50, 47-55. https://doi.org/10.1016/j.ijrmms.2011.12.012
- Muskhelishvili, N.I. (1963), Some Basic Problems in Mathematical Theory of Elasticity, Noordhoff International Publishing, Leyden, IL, USA.
- Ulusay, R. and Gokceoglu, C. (1997), "The modified block punch index test", Can. Geotech. J., 34(6), 991-1001. https://doi.org/10.1139/t97-049
- Ulusay, R. and Hudson, J.A. (Eds.) (2007), The Blue Book - The Complete ISRM Suggested Methods for Rock Characterisation, Testing and Monitoring: 1974-2006, ISRM & Turkish National Group of ISRM, Ankara, Turkey.
- Willam, K.J. and Warnke, E.P. (1974), Constitutive Model for the Triaxial Behaviour of Concrete, IABSE, Report No. 19; Bergamo, Italy, pp. 1-30.
- Yilmaz, E., Belem, T., Bussiere, B. and Benzaazoua, M. (2011), "Relationships between microstructural properties and compressive strength of consolidated and unconsolidated cemented paste backfills", Cement Concrete Compos., 33(6), 702-715. https://doi.org/10.1016/j.cemconcomp.2011.03.013
- Yilmaz, E., Belem, T. and Benzaazoua, M. (2015), "Specimen size effect on strength behavior of cemented paste backfills subjected to different placement conditions", Eng. Geol., 185, 52-62. https://doi.org/10.1016/j.enggeo.2014.11.015
- Yu, Y., Yin, J. and Zhong, Z. (2006), "Shape effects in the Brazilian tensile strength test and a 3D FEM correction", Int. J. Rock Mech. Min. Sci., 43(4), 623-627. https://doi.org/10.1016/j.ijrmms.2005.09.005
Cited by
- Anisotropy of Rock Profile JRC Values and Its Empirical Formula: A Case Study on Yellow Rust Granite vol.35, pp.4, 2017, https://doi.org/10.1007/s10706-017-0199-7
- Closed-Form Solution for the Stresses in Brazilian Disc Tests Under Vertical Uniform Loads pp.1434-453X, 2018, https://doi.org/10.1007/s00603-018-1511-4
- Dog bone shaped specimen testing method to evaluate tensile strength of rock materials vol.12, pp.6, 2016, https://doi.org/10.12989/gae.2017.12.6.883
- Analytical solution and experimental study of membrane penetration in triaxial test vol.13, pp.6, 2016, https://doi.org/10.12989/gae.2017.13.6.1027
- Coordinated supporting method of gob-side entry retaining in coal mines and a case study with hard roof vol.15, pp.6, 2016, https://doi.org/10.12989/gae.2018.15.6.1173
- Determination of the Direct Tensile Strength of Granite Rock by Using a New Dumbbell Shape and its Relationship with Brazilian Tensile Strength vol.221, pp.None, 2016, https://doi.org/10.1088/1755-1315/221/1/012094
- Experimental study of crack propagation of rock-like specimens containing conjugate fractures vol.17, pp.4, 2016, https://doi.org/10.12989/gae.2019.17.4.323
- Roof Cutting Parameters Design for Gob-Side Entry in Deep Coal Mine: A Case Study vol.12, pp.10, 2016, https://doi.org/10.3390/en12102032
- Effects of curing time, cement content, and saturation state on mode-I fracture toughness of cemented paste backfill vol.235, pp.None, 2020, https://doi.org/10.1016/j.engfracmech.2020.107174
- Strength characteristics and fracture evolution of rock with different shapes inclusions based on particle flow code vol.22, pp.5, 2016, https://doi.org/10.12989/gae.2020.22.5.461
- Prediction Models for Evaluating the Strength of Cemented Paste Backfill: A Comparative Study vol.10, pp.11, 2016, https://doi.org/10.3390/min10111041
- Progressive failure and friction motion characteristics of contact surface of composite rock mass vol.303, pp.None, 2021, https://doi.org/10.1051/e3sconf/202130301037
- Tensile Strength of Cemented Paste Backfill vol.44, pp.6, 2016, https://doi.org/10.1520/gtj20200206
- Investigation of a new drilling design for loading core specimens with triple holes to determine direct tensile strength values of rock materials vol.3, pp.2, 2021, https://doi.org/10.1002/mdp2.154
- Effect of heat treatment and bedding orientation on the tensile properties of bedded sandstone vol.26, pp.5, 2016, https://doi.org/10.12989/gae.2021.26.5.477
- Experimental study of the evolution of pore water pressure and total stresses during and after the deposition of slurried backfill vol.26, pp.5, 2016, https://doi.org/10.12989/gae.2021.26.5.499
- Hybrid Failure of Cemented Paste Backfill vol.11, pp.10, 2021, https://doi.org/10.3390/min11101141