DOI QR코드

DOI QR Code

Probabilistic multi-objective optimization of a corrugated-core sandwich structure

  • Khalkhali, Abolfazl (Automotive Simulation and Optimal Design Research Laboratory, School of Automotive Engineering, Iran University of Science and Technology) ;
  • Sarmadi, Morteza (Automotive Simulation and Optimal Design Research Laboratory, School of Automotive Engineering, Iran University of Science and Technology) ;
  • Khakshournia, Sharif (Automotive Simulation and Optimal Design Research Laboratory, School of Automotive Engineering, Iran University of Science and Technology) ;
  • Jafari, Nariman (Automotive Simulation and Optimal Design Research Laboratory, School of Automotive Engineering, Iran University of Science and Technology)
  • 투고 : 2015.11.30
  • 심사 : 2016.02.19
  • 발행 : 2016.06.25

초록

Corrugated-core sandwich panels are prevalent for many applications in industries. The researches performed with the aim of optimization of such structures in the literature have considered a deterministic approach. However, it is believed that deterministic optimum points may lead to high-risk designs instead of optimum ones. In this paper, an effort has been made to provide a reliable and robust design of corrugated-core sandwich structures through stochastic and probabilistic multi-objective optimization approach. The optimization is performed using a coupling between genetic algorithm (GA), Monte Carlo simulation (MCS) and finite element method (FEM). To this aim, Prob. Design module in ANSYS is employed and using a coupling between optimization codes in MATLAB and ANSYS, a connection has been made between numerical results and optimization process. Results in both cases of deterministic and probabilistic multi-objective optimizations are illustrated and compared together to gain a better understanding of the best sandwich panel design by taking into account reliability and robustness. Comparison of results with a similar deterministic optimization study demonstrated better reliability and robustness of optimum point of this study.

키워드

참고문헌

  1. Amitava, G. and Falzaranoa, J. (2015), "Application of multi objective genetic algorithm in ship hull optimization", Ocean Syst. Eng., Int. J., 5(2), 91-107. https://doi.org/10.12989/ose.2015.5.2.091
  2. Athawale, V.M. and Chakraborty, S. (2010), "A TOPSIS method-based approach tOmachine tool selection", International Conference on Industrial Engineering and Operations Management, Dhaka, Bangladesh, January.
  3. Bartolozzi, G., Baldanzini, N., Pierini, M. and Zonfrillo, G. (2015), "Static and dynamic experimental validation of analytical homogenization models for corrugated core sandwich panels", Comp. Struct., 125, 343-353. https://doi.org/10.1016/j.compstruct.2015.02.014
  4. Behzadian, M., Otaghsara, S.K., Yazdani, M. and Ignatius, J. (2012), "A state-of the-art survey of TOPSIS applications", Expert Syst. Appl., 39(17), 13051-13069. https://doi.org/10.1016/j.eswa.2012.05.056
  5. Biagi, R. and Bart-Smith, H. (2012), "In-plane column response of metallic corrugated core sandwich panels", Int. J. Solid. Struct., 49(26), 3901-3914. https://doi.org/10.1016/j.ijsolstr.2012.08.015
  6. Chang, W.S., Krauthammer, T. and Ventsel, E. (2006), "Elasto-plastic analysis of corrugated-core sandwich plates", Mech. Adv. Mater. Struc., 13(2), 151-160. https://doi.org/10.1080/15376490500451767
  7. Collette, Y. and Siarry, P. (2013), Multiobjective Optimization: Principles and Case Studies (Decision Engineering), Springer, New York, NY, USA.
  8. Deb, K. (2001), Multi-Objective Optimization Using Evolutionary Algorithms, Wiley, Washington, USA.
  9. Diweker, U.M. and Kalagnanam, J.R. (1997), "Efficient sampling technique for optimization under uncertainty", AIChE J., 43(2), 440-447. https://doi.org/10.1002/aic.690430217
  10. Diweker, U.M. and Urmila M. (2003), "A novel sampling approach tocombinatorial optimization under uncertainty", Comput. Optim. Appl., 24(3), 335-371. https://doi.org/10.1023/A:1021866210039
  11. Fu, Y., Diweker, U.M., Young, D. and Cabezas, H. (2000), "Process design for the environment: A multiobjective framework under uncertainty", Clean Product. Processes, 2(2), 92-107. https://doi.org/10.1007/s100980000060
  12. Gadakh, V.S. (2012), "Parametric optimization of wire electrical discharge machining using TOPSIS method", Adv. Product. Eng. Manage., 7(3), 157-164. https://doi.org/10.14743/apem2012.3.138
  13. Ghashochi-Bargh, H. and Sadr, M.H. (2014), "A modified multi-objective elitist-artificial bee colony algorithm for optimization of smart FML panel", Struct. Eng. Mech., Int. J., 52(6), 1209-1224. https://doi.org/10.12989/sem.2014.52.6.1209
  14. Guha, A. and Falzanaro, J. (2015), "Application of multi objective genetic algorithm in ship hull optimization", Ocean Syst. Eng., Int. J., 5(2), 91-107. https://doi.org/10.12989/ose.2015.5.2.091
  15. Kalagnanam, J.R. and Diweker, U.M. (1997), "An efficient sampling technique for off-line quality control", Technometrics, 39(3), 308-319. https://doi.org/10.1080/00401706.1997.10485122
  16. Kaveh, A., Shojaei, I., Gholipour, Y. and Rahami, H. (2013), "Seismic design of steel frames using multiobjective optimization", Struct. Eng. Mech., Int. J., 45(2), 211-232. https://doi.org/10.12989/sem.2013.45.2.211
  17. Khalkhali, A. (2015), "Best compromising crashworthiness design of automotive S-rail using TOPSIS and modified NSGAII", J. Cent. South Univ., 22(1), 121-133. https://doi.org/10.1007/s11771-015-2502-1
  18. Khalkhali, A. and Safikhani, H. (2012), "ParetObased multi-objective optimization of cyclone vortex finder using CFD, GMDH type neural networks and genetic algorithms", Eng. Optim., 44 (1), 105-118. https://doi.org/10.1080/0305215X.2011.564619
  19. Khakhali, A., Nariman-zadehabc, N., Darvizeha, A., Masoumid, A. and Notghi, B. (2010), "Reliabilitybased robust multi-objective crashworthiness optimisation of S-shaped box beams with parametric uncertainties", Int. J. Crashworth., 15(4), 443-456. https://doi.org/10.1080/13588261003696458
  20. Khalkhali, A., Khakshournia, S. and Nariman-Zadeh, N. (2014), "A hybrid method of FEM, modified NSGA-II and TOPSIS for structural optimization of sandwich panels with corrugated core", J. Sandw. Struct. Mater., 16(4), 398-417. https://doi.org/10.1177/1099636214531516
  21. Khalkhali, A., Khakshournia, S. and Saberi, P. (2016), "Optimal design of functionally graded PmPV/CNT nanocomposite cylindrical tube for purpose of torque transmission", J. Cent. South Univ., 23(2), 362-369. https://doi.org/10.1007/s11771-016-3081-5
  22. Lee, D., Gonzalez, L.F., Periaux, J., Srinivas, K. and Onate, E. (2011), "Hybrid-game strategies for multiobjective design optimization in engineering", Comp. Fluid., 47(1), 189-204. https://doi.org/10.1016/j.compfluid.2011.03.007
  23. Li, G., Meng, Z. and Hu, H. (2015), "An adaptive hybrid approach for reliability-based design optimization", Struct. Multidisc. Optimiz., 51(5), 1051-1065. https://doi.org/10.1007/s00158-014-1195-7
  24. Lingshuang, K., Chunhua, Y., Shenping, X. and Gang, C. (2013), "Stochastic optimization method based on HSS technique and expert knowledge for a metallurgical blending process", Proceedings of the 3rd International Conference on Intelligent System Design and Engineering Applications (ISDEA), Changsha, China, October, pp. 1290-1293.
  25. Lonn, D., Oman, M., Nilsson, L. and Simonsson, K. (2009), "Finite element based robustness study of a truck cab subjected tOimpact loading", Int. J. Crashworth., 14, 111-124. https://doi.org/10.1080/13588260802412992
  26. Lu, T.J., Hutchinson, J.W. and Evans, A.G. (2001), "Optimal design of flexural actuator", J. Mech. Phys. Solid., 49(9), 2071-2093. https://doi.org/10.1016/S0022-5096(01)00024-2
  27. Malekzadeh, K., Khalili, S.M.R. and Veysi-Gorgabad, A. (2015), "Dynamic response of composite sandwich beams with arbitrary functionally graded cores subjected tOlow-velocity impact", Mech. Adv. Mater. Struct., 22(8), 605-618. https://doi.org/10.1080/15376494.2013.828814
  28. Nariman-Zadeh, N., Darvizeh, A. and Jamali, A. (2006), "Pareto optimization of energy absorption of square aluminum columns using multi-objective genetic algorithms", Proceedings of IMechE, Part B: Journal of Engineering Manufacture, 220(2), 213-224. https://doi.org/10.1243/095440506X78156
  29. Papadrakakis, M., Lagaros, N.D. and Plevris, V. (2004), "Structural optimization considering the probabilistic system response", Int. J. Theor. Appl. Mech., 31(3-4), 361-393. https://doi.org/10.2298/TAM0404361P
  30. Richardson, J.N., Coelho, R.F. and Adriaenssens, S. (2015), "Robust topology optimization of truss structures with random loading and material properties: A multiobjective perspective", Comp. Struct., 154, 41-47. https://doi.org/10.1016/j.compstruc.2015.03.011
  31. Sepehri, A., Daneshmand, F. and Jafarpur, K. (2012), "A modified particle swarm approach for multiobjective optimization of laminated composite structures", Struct. Eng. Mech., Int. J., 42(3), 335-352. https://doi.org/10.12989/sem.2012.42.3.335
  32. Shidpour, H., Shahrokhi, M. and Bernard, A. (2013), "A multi-objective programming approach, integrated intOthe TOPSIS method, in order to optimize product design; in three-dimensional concurrent engineering", Comput. Indust. Eng., 64(4), 875-885. https://doi.org/10.1016/j.cie.2012.12.016
  33. Srinivas, N. and Deb, K. (1994), "Multiobjective optimization using nondominated sorting in genetic algorithms", Evol. Comp., 2(3), 221-248. https://doi.org/10.1162/evco.1994.2.3.221
  34. Subramanyan, K., Diweker, U.M. and Goyal, A. (2004), "Multi-objective optimization for hybrid fuel cells power system under uncertainty", J. Power Sour., 132(1), 99-112. https://doi.org/10.1016/j.jpowsour.2003.12.053
  35. Sun, H. and Betti, R. (2015) "A hybrid optimization algorithm with Bayesian inference for probabilistic model updating", Comput.-Aid. Civil Infra. Eng., 30(8), 602-619. https://doi.org/10.1111/mice.12142
  36. Tan, X.H. and Soh, A.K. (2007), "Multi-objective optimization of the sandwich panels with prismatic cores using genetic algorithms", Int. J. Solid. Struct., 44(17), 5466-5480. https://doi.org/10.1016/j.ijsolstr.2007.01.006
  37. Targul, T. (2012), "Multi objective size and topolgy optimization of dome structures", Struct. Eng. Mech., Int. J., 43(6), 795-821. https://doi.org/10.12989/sem.2012.43.6.795
  38. Valdevit, L., Hutchinson, J.W. and Evans, A.G. (2004), "Structurally optimized sandwich panels with prismatic cores", Int. J. Solid. Struct., 41(18-19), 5105-5124. https://doi.org/10.1016/j.ijsolstr.2004.04.027
  39. Wadley, H.N.G., Fleck, N.A. and Evans, A.G. (2003), "Fabrication and structural performance of periodic cellular metal sandwich structures", Compos. Sci. Technol., 63(16), 2331-2343. https://doi.org/10.1016/S0266-3538(03)00266-5
  40. Wei, K., He, R., Cheng, X., Zhang, R., Pei, Y. and Fang, D. (2014), "Fabrication and mechanical properties of lightweight ZrO2 ceramic corrugated core sandwich panels", Mater. Des., 64, 91-95. https://doi.org/10.1016/j.matdes.2014.07.038
  41. Yang, H., Zhu, Y., Lu, Q. and Zhang, J. (2015), "Dynamic reliability based design optimization of the tripod sub-structure of offshore wind turbines", Renew. Energy, 78, 16-25. https://doi.org/10.1016/j.renene.2014.12.061
  42. Zhang, P.,Cheng,Y., Liu, J., Wang, C.,Hou, H. and Li, Y. (2015), "Experimental and numerical investigations on laser-welded corrugated-core sandwich panels subjected to air blast loading", Mar. Struct., 40, 225-246. https://doi.org/10.1016/j.marstruc.2014.11.007

피인용 문헌

  1. Robust multi-objective optimization of STMD device to mitigate buildings vibrations vol.11, pp.2, 2016, https://doi.org/10.12989/eas.2016.11.2.347
  2. Rao-3 algorithm for the weight optimization of reinforced concrete cantilever retaining wall vol.20, pp.6, 2016, https://doi.org/10.12989/gae.2020.20.6.527