참고문헌
- Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis. Biochem J 1992;281 (Pt 1):21-40 https://doi.org/10.1042/bj2810021
- Saunders DE, Howe FA, van den Boogaart A, Griffiths JR, Brown MM. Aging of the adult human brain: in vivo quantitation of metabolite content with proton magnetic resonance spectroscopy. J Magn Reson Imaging 1999;9:711-716 https://doi.org/10.1002/(SICI)1522-2586(199905)9:5<711::AID-JMRI14>3.0.CO;2-3
- Wang Y, Li SJ. Differentiation of metabolic concentrations between gray matter and white matter of human brain by in vivo 1H magnetic resonance spectroscopy. Magn Reson Med 1998;39:28-33 https://doi.org/10.1002/mrm.1910390107
- Tan J, Bluml S, Hoang T, Dubowitz D, Mevenkamp G, Ross B. Lack of effect of oral choline supplement on the concentrations of choline metabolites in human brain. Magn Reson Med 1998;39:1005-1010 https://doi.org/10.1002/mrm.1910390619
- Baslow MH. N-acetylaspartate in the vertebrate brain: metabolism and function. Neurochem Res 2003;28:941-953 https://doi.org/10.1023/A:1023250721185
- Birken DL, Oldendorf WH. N-acetyl-L-aspartic acid: a literature review of a compound prominent in 1H-NMR spectroscopic studies of brain. Neurosci Biobehav Rev 1989;13:23-31 https://doi.org/10.1016/S0149-7634(89)80048-X
- Clark JB. N-acetyl aspartate: a marker for neuronal loss or mitochondrial dysfunction. Dev Neurosci 1998;20:271-276 https://doi.org/10.1159/000017321
- Brambilla P, Perez J, Barale F, Schettini G, Soares JC. GABAergic dysfunction in mood disorders. Mol Psychiatry 2003;8:721-737, 715 https://doi.org/10.1038/sj.mp.4001362
- Oz G, Terpstra M, Tkac I, et al. Proton MRS of the unilateral substantia nigra in the human brain at 4 tesla: detection of high GABA concentrations. Magn Reson Med 2006;55:296-301 https://doi.org/10.1002/mrm.20761
- Ardenkjaer-Larsen JH, Fridlund B, Gram A, et al. Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR. Proc Natl Acad Sci U S A 2003;100:10158-10163 https://doi.org/10.1073/pnas.1733835100
- Nelson SJ, Kurhanewicz J, Vigneron DB, et al. Metabolic imaging of patients with prostate cancer using hyperpolarized [1-(1)(3)C]pyruvate. Sci Transl Med 2013;5:198ra108
- Park I, Larson PE, Tropp JL, et al. Dynamic hyperpolarized carbon-13 MR metabolic imaging of nonhuman primate brain. Magn Reson Med 2014;71:19-25 https://doi.org/10.1002/mrm.25003
- Lau AZ, Miller JJ, Robson MD, Tyler DJ. Cardiac perfusion imaging using hyperpolarized (13) c urea using flow sensitizing gradients. Magn Reson Med 2016;75:1474-1483 https://doi.org/10.1002/mrm.25713
-
Albers MJ, Bok R, Chen AP, et al. Hyperpolarized
$^{13}C$ lactate, pyruvate, and alanine: noninvasive biomarkers for prostate cancer detection and grading. Cancer Res 2008;68:8607-8615 https://doi.org/10.1158/0008-5472.CAN-08-0749 - Harrison C, Yang C, Jindal A, et al. Comparison of kinetic models for analysis of pyruvate-to-lactate exchange by hyperpolarized 13 C NMR. NMR Biomed 2012;25:1286-1294 https://doi.org/10.1002/nbm.2801
-
Atherton HJ, Schroeder MA, Dodd MS, et al. Validation of the in vivo assessment of pyruvate dehydrogenase activity using hyperpolarised
$^{13}C$ MRS. NMR Biomed 2011;24:201-208 https://doi.org/10.1002/nbm.1573 -
Kettunen MI, Hu DE, Witney TH, et al. Magnetization transfer measurements of exchange between hyperpolarized [1-
$^{13}C$ ] pyruvate and [1-13C]lactate in a murine lymphoma. Magn Reson Med 2010;63:872-880 https://doi.org/10.1002/mrm.22276 - Xu T, Mayer D, Gu M, et al. Quantification of in vivo metabolic kinetics of hyperpolarized pyruvate in rat kidneys using dynamic 13C MRSI. NMR Biomed 2011;24:997-1005 https://doi.org/10.1002/nbm.1719
- Yen YF, Le Roux P, Mayer D, et al. T(2) relaxation times of (13)C metabolites in a rat hepatocellular carcinoma model measured in vivo using (13)C-MRS of hyperpolarized [1-(13)C]pyruvate. NMR Biomed 2010;23:414-423
- Brindle KM. NMR methods for measuring enzyme kinetics in vivo. Progress in N M R Spectroscopy 1988;20:257-293 https://doi.org/10.1016/0079-6565(88)80003-7
- McConnell HM. Reaction rates by nuclear magnetic resonance. J Chem Phys 1958;28:430-431 https://doi.org/10.1063/1.1744152
- Oppenheim AV, Willsky AS, Nawab SH. Signals and systems, 2nd ed. Upper Saddle River, NJ: Prentice Hall, 1997:957
- Kazan SM, Reynolds S, Kennerley A, et al. Kinetic modeling of hyperpolarized (13)C pyruvate metabolism in tumors using a measured arterial input function. Magn Reson Med 2013;70:943-953 https://doi.org/10.1002/mrm.24546
- von Morze C, Larson PE, Hu S, et al. Imaging of blood flow using hyperpolarized [(13)C]urea in preclinical cancer models. J Magn Reson Imaging 2011;33:692-697 https://doi.org/10.1002/jmri.22484
- Zierhut ML, Yen YF, Chen AP, et al. Kinetic modeling of hyperpolarized 13C1-pyruvate metabolism in normal rats and TRAMP mice. J Magn Reson 2010;202:85-92 https://doi.org/10.1016/j.jmr.2009.10.003
- Santarelli MF, Positano V, Giovannetti G, et al. How the signal-to-noise ratio influences hyperpolarized 13C dynamic MRS data fitting and parameter estimation. NMR Biomed 2012;25:925-934 https://doi.org/10.1002/nbm.1813
- Menichetti L, Frijia F, Flori A, et al. Assessment of realtime myocardial uptake and enzymatic conversion of hyperpolarized [1-(1)(3)C]pyruvate in pigs using slice selective magnetic resonance spectroscopy. Contrast Media Mol Imaging 2012;7:85-94 https://doi.org/10.1002/cmmi.480
- Lee H, Lee J, Joe E, et al. Determination of optimal scan time for the measurement of downstream metabolites in hyperpolarized 13C MRSI. Investig Magn Reson Imaging 2015;19:212-217 https://doi.org/10.13104/imri.2015.19.4.212
- Hill DK, Orton MR, Mariotti E, et al. Model free approach to kinetic analysis of real-time hyperpolarized 13C magnetic resonance spectroscopy data. PLoS One 2013;8:e71996 https://doi.org/10.1371/journal.pone.0071996