DOI QR코드

DOI QR Code

Non-Invasive in vivo Loss Tangent Imaging: Thermal Sensitivity Estimation at the Larmor Frequency

  • Choi, Narae (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Kim, Min-Oh (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Shin, Jaewook (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Lee, Joonsung (Center for Neuroscience Imaging Research, Institute for Basic Science, Sungkyunkwan University) ;
  • Kim, Dong-Hyun (Department of Electrical and Electronic Engineering, Yonsei University)
  • Received : 2016.03.11
  • Accepted : 2016.03.20
  • Published : 2016.03.30

Abstract

Visualization of the tissue loss tangent property can provide distinct contrast and offer new information related to tissue electrical properties. A method for non-invasive imaging of the electrical loss tangent of tissue using magnetic resonance imaging (MRI) was demonstrated, and the effect of loss tangent was observed through simulations assuming a hyperthermia procedure. For measurement of tissue loss tangent, radiofrequency field maps ($B_1{^+}$ complex map) were acquired using a double-angle actual flip angle imaging MRI sequence. The conductivity and permittivity were estimated from the complex valued $B_1{^+}$ map using Helmholtz equations. Phantom and ex-vivo experiments were then performed. Electromagnetic simulations of hyperthermia were carried out for observation of temperature elevation with respect to loss tangent. Non-invasive imaging of tissue loss tangent via complex valued $B_1{^+}$ mapping using MRI was successfully conducted. Simulation results indicated that loss tangent is a dominant factor in temperature elevation in the high frequency range during hyperthermia. Knowledge of the tissue loss tangent value can be a useful marker for thermotherapy applications.

Keywords

References

  1. van der Put RW, Kerkhof EM, Raaymakers BW, Jurgenliemk-Schulz IM, Lagendijk JJ. Contour propagation in MRIguided radiotherapy treatment of cervical cancer: the accuracy of rigid, non-rigid and semi-automatic registrations. Phys Med Biol 2009;54:7135-7150 https://doi.org/10.1088/0031-9155/54/23/007
  2. McDannold N, Clement GT, Black P, Jolesz F, Hynynen K. Transcranial magnetic resonance imaging-guided focused ultrasound surgery of brain tumors: initial findings in 3 patients. Neurosurgery 2010;66:323-332; discussion 332 https://doi.org/10.1227/01.NEU.0000360379.95800.2F
  3. Fuentes D, Walker C, Elliott A, Shetty A, Hazle JD, Stafford RJ. Magnetic resonance temperature imaging validation of a bioheat transfer model for laser-induced thermal therapy. Int J Hyperthermia 2011;27:453-464 https://doi.org/10.3109/02656736.2011.557028
  4. Hynynen K, Pomeroy O, Smith DN, et al. MR imagingguided focused ultrasound surgery of fibroadenomas in the breast: a feasibility study. Radiology 2001;219:176-185 https://doi.org/10.1148/radiology.219.1.r01ap02176
  5. Peyman A, Gabriel C, Benedickter HR, Frohlich J. Dielectric properties of human placenta, umbilical cord and amniotic fluid. Phys Med Biol 2011;56:N93-98 https://doi.org/10.1088/0031-9155/56/7/N01
  6. Brace CL. Microwave tissue ablation: biophysics, technology, and applications. Crit Rev Biomed Eng 2010;38:65-78 https://doi.org/10.1615/CritRevBiomedEng.v38.i1.60
  7. Garrean S, Hering J, Saied A, Helton WS, Espat NJ. Radiofrequency ablation of primary and metastatic liver tumors: a critical review of the literature. Am J Surg 2008;195:508-520 https://doi.org/10.1016/j.amjsurg.2007.06.024
  8. Goldberg SN, Grassi CJ, Cardella JF, et al. Image-guided tumor ablation: standardization of terminology and reporting criteria. J Vasc Interv Radiol 2009;20:S377-390 https://doi.org/10.1016/j.jvir.2009.04.011
  9. Haemmerich D. Biophysics of radiofrequency ablation. Crit Rev Biomed Eng 2010;38:53-63 https://doi.org/10.1615/CritRevBiomedEng.v38.i1.50
  10. Pennes HH. Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol 1948;1:93-122 https://doi.org/10.1152/jappl.1948.1.2.93
  11. Gajsek P, Hurt WD, Ziriax JM, Mason PA. Parametric dependence of SAR on permittivity values in a man model. IEEE Trans Biomed Eng 2001;48:1169-1177 https://doi.org/10.1109/10.951520
  12. Voigt T, Katscher U, Doessel O. Quantitative conductivity and permittivity imaging of the human brain using electric properties tomography. Magn Reson Med 2011;66:456-466 https://doi.org/10.1002/mrm.22832
  13. van Lier AL, Brunner DO, Pruessmann KP, et al. B1(+) phase mapping at 7 T and its application for in vivo electrical conductivity mapping. Magn Reson Med 2012;67:552-561 https://doi.org/10.1002/mrm.22995
  14. Seo JK, Kim MO, Lee J, et al. Error analysis of nonconstant admittivity for MR-based electric property imaging. IEEE Trans Med Imaging 2012;31:430-437 https://doi.org/10.1109/TMI.2011.2171000
  15. Choi N, Lee J, Kim MO, Shin J, Kim DH. A modified multiecho AFI for simultaneous B1(+) magnitude and phase mapping. Magn Reson Imaging 2014;32:314-320 https://doi.org/10.1016/j.mri.2013.12.005
  16. van den Bergen B, Stolk CC, Berg JB, Lagendijk JJ, Van den Berg CA. Ultra fast electromagnetic field computations for RF multi-transmit techniques in high field MRI. Phys Med Biol 2009;54:1253-1264 https://doi.org/10.1088/0031-9155/54/5/010
  17. Christ A, Kainz W, Hahn EG, et al. The Virtual Family--development of surface-based anatomical models of two adults and two children for dosimetric simulations. Phys Med Biol 2010;55:N23-38 https://doi.org/10.1088/0031-9155/55/2/N01
  18. Shin J, Kim MJ, Lee J, et al. Initial study on in vivo conductivity mapping of breast cancer using MRI. J Magn Reson Imaging 2015;42:371-378 https://doi.org/10.1002/jmri.24803
  19. Wen H. Noninvasive quantitative mapping of conductivity and dielectric distributions using RF wave propagation effects in high-field MRI. Proceedings of the SPIE 2003;5030:471-477
  20. Hoult DI. The principle of reciprocity in signal strength calculations - a mathematical guide. Concept Magnetic Res 2000;12:173-187 https://doi.org/10.1002/1099-0534(2000)12:4<173::AID-CMR1>3.0.CO;2-Q
  21. Renou R, Ding M, Zhu H, Szymczyk A, Malfreyt P, Ghoufi A. Concentration dependence of the dielectric permittivity, structure, and dynamics of aqueous NaCl solutions: comparison between the Drude oscillator and electronic continuum models. J Phys Chem B 2014;118:3931-3940 https://doi.org/10.1021/jp4118419
  22. Akilan C. Thermodynamic and related studies of aqueous copper (II) sulfate solutions. PhD Dissertation. Australia: Murdoch University, 2008:87-134
  23. Weast RC, Astle MJ, Beyer WH. CRC handbook of chemistry and physics. 69th ed. Boca Raton, Florida: CRC Press, 1988
  24. Wolf AV. Aqueous solutions and body fluids. Their concentrative properties and conversion tables. New York: Hoeber Medical Division Harper & Row Publishers, 1966
  25. Huang L, Schweser F, Herrmann K-H, Kramer M, Deistung A, Reichenbach JR. A Monte Carlo method for overcoming the edge artifacts in MRI-based electrical conductivity mapping. Proc 22nd Annual Meeting of ISMRM; Milan, Italy, 2014:3190
  26. Stollberger R, Wach P. Imaging of the active B1 field in vivo. Magn Reson Med 1996;35:246-251 https://doi.org/10.1002/mrm.1910350217
  27. Peyman A, Holden SJ, Watts S, Perrott R, Gabriel C. Dielectric properties of porcine cerebrospinal tissues at microwave frequencies: in vivo, in vitro and systematic variation with age. Phys Med Biol 2007;52:2229-2245 https://doi.org/10.1088/0031-9155/52/8/013
  28. Cole KS, Cole RH. Dispersion and absorption in dielectrics I. Alternating current characteristics. J Chem Phys 1941;9:341 https://doi.org/10.1063/1.1750906
  29. Peyman A, Gabriel C. Cole-Cole parameters for the dielectric properties of porcine tissues as a function of age at microwave frequencies. Phys Med Biol 2010;55:N413-419 https://doi.org/10.1088/0031-9155/55/15/N02
  30. Solazzo SA, Liu Z, Lobo SM, et al. Radiofrequency ablation: importance of background tissue electrical conductivity--an agar phantom and computer modeling study. Radiology 2005;236:495-502 https://doi.org/10.1148/radiol.2362040965