DOI QR코드

DOI QR Code

Geometric and mechanical properties evaluation of scaffolds for bone tissue applications designing by a reaction-diffusion models and manufactured with a material jetting system

  • Velasco, Marco A. (Servicio Nacional de Aprendizaje SENA, Centro Metalmecanico, GICEMET Research Group) ;
  • Lancheros, Yadira (Servicio Nacional de Aprendizaje SENA, Centro de Manufactura Textil y del Cuero, CMTC Research Group) ;
  • Garzon-Alvarado, Diego A. (Biomimetics Laboratory: Group of Mechanobiology of Organs and Tissues, and Numerical Methods and Modeling Research Group (GNUM), Instituto de Biotecnologia (IBUN), Universidad Nacional de Colombia)
  • 투고 : 2015.07.25
  • 심사 : 2016.06.26
  • 발행 : 2016.10.01

초록

Scaffolds are essential in bone tissue engineering, as they provide support to cells and growth factors necessary to regenerate tissue. In addition, they meet the mechanical function of the bone while it regenerates. Currently, the multiple methods for designing and manufacturing scaffolds are based on regular structures from a unit cell that repeats in a given domain. However, these methods do not resemble the actual structure of the trabecular bone which may work against osseous tissue regeneration. To explore the design of porous structures with similar mechanical properties to native bone, a geometric generation scheme from a reaction-diffusion model and its manufacturing via a material jetting system is proposed. This article presents the methodology used, the geometric characteristics and the modulus of elasticity of the scaffolds designed and manufactured. The method proposed shows its potential to generate structures that allow to control the basic scaffold properties for bone tissue engineering such as the width of the channels and porosity. The mechanical properties of our scaffolds are similar to trabecular tissue present in vertebrae and tibia bones. Tests on the manufactured scaffolds show that it is necessary to consider the orientation of the object relative to the printing system because the channel geometry, mechanical properties and roughness are heavily influenced by the position of the surface analyzed with respect to the printing axis. A possible line for future work may be the establishment of a set of guidelines to consider the effects of manufacturing processes in designing stages.

키워드

참고문헌

  1. Weiner S, Wagner HD. The material bone: structure-mechanical function relations. Annu. Rev. Mater. Sci. 1998;28(1)271-98. https://doi.org/10.1146/annurev.matsci.28.1.271
  2. Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature 2014;505(7483)327-34. https://doi.org/10.1038/nature12984
  3. Raposo JF, Sobrinho LG, Ferreira HG. A minimal mathematical model of calcium homeostasis. J. Clin. Endocrinol. Metab. 2002;87(9)4330-40. https://doi.org/10.1210/jc.2002-011870
  4. Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit. Rev. Biomed. Eng. 2012;40(5)363-408. https://doi.org/10.1615/CritRevBiomedEng.v40.i5.10
  5. Velasco MA, Narvaez-tovar CA, Garzon-alvarado DA. Design, Materials, and Mechanobiology of Biodegradable Scaffolds for Bone Tissue Engineering Article ID 729076. Biomed. Res. Int. 2015;2015: 21. (Article ID 729076).
  6. Ikada Y. Challenges in tissue engineering. Interface 2006;3(10)589-601.
  7. Burg KJ, Porter S, Kellam JF. Biomaterial developments for bone tissue engineering. Biomaterials 2000;21(23)2347-59. https://doi.org/10.1016/S0142-9612(00)00102-2
  8. Giannitelli SM, Accoto D, Trombetta M, Rainer A. Current trends in the design of scaffolds for computer-aided tissue engineering. Acta Biomater. 2014;10(2)580-94. https://doi.org/10.1016/j.actbio.2013.10.024
  9. Chua CK, Leong KF, Cheah CM, Chua SW. Development of a tissue engineering scaffold structure library for rapid prototyping. Part 2 : Parametric library and assembly program. Adv. Manuf. Technol. 2003;21: 302-12. https://doi.org/10.1007/s001700300035
  10. Yang N, Zhou K. Effective method for multi-scale gradient porous scaffold design and fabrication. Mater. Sci. Eng. C, Mater. Biol. Appl. 2014;43:502-5. https://doi.org/10.1016/j.msec.2014.07.052
  11. Sutradhar A, Paulino G. Topological optimization for designing patient-specific large craniofacial segmental bone replacements. Proc. Natl. Acad. Sci. 2010;107(30)13222-7. https://doi.org/10.1073/pnas.1001208107
  12. Goncalves Coelho P, Rui Fernandes P, Carrico Rodrigues H. Multiscale modeling of bone tissue with surface and permeability control. J. Biomech. 2011;44(2)321-9. https://doi.org/10.1016/j.jbiomech.2010.10.007
  13. Coelho PG, Hollister SJ, Flanagan CL, Fernandes PR. Bioresorbable scaffolds for bone tissue engineering: optimal design, fabrication, mechanical testing and scale-size effects analysis. Med. Eng. Phys. 2015;37(3)287-96. https://doi.org/10.1016/j.medengphy.2015.01.004
  14. Dias MR, Guedes JM, Flanagan CL, Hollister SJ, Fernandes PR. Optimization of scaffold design for bone tissue engineering: a computa-tional and experimental study. Med. Eng. Phys. 2014;36(4)448-57. https://doi.org/10.1016/j.medengphy.2014.02.010
  15. Woo Jung J, Yi H-G, Kang T-Y, Yong W-J, Jin S, Yun W-S, Cho D-W. Evaluation of the effective diffusivity of a freeform fabricated scaffold using computational simulation. J. Biomech. Eng. 2013;135(8)7.
  16. Provin C, Takano K, Sakai Y, Fujii T, Shirakashi R. A method for the design of 3D scaffolds for high-density cell attachment and determination of optimum perfusion culture conditions. J. Biomech. 2008;41(7)1436-49. https://doi.org/10.1016/j.jbiomech.2008.02.025
  17. Starly B, Sun W. Internal Scaffold Architecture Designs using Linden- mayer Systems. Comput-Aided Des. Appl. 2007;4(1-4)395-403. https://doi.org/10.1080/16864360.2007.10738559
  18. Bashoor-Zadeh M, Baroud G, Bohner M. Geometric analysis of porous bone substitutes using micro-computed tomography and fuzzy distance transform. Acta Biomater. 2010;6(3)864-75. https://doi.org/10.1016/j.actbio.2009.08.007
  19. Podshivalov L, Gomes CM, Zocca A, Guenster J, Bar-Yoseph P, Fischer A. Design, Analysis and Additive Manufacturing of Porous Structures for Biocompatible Micro-Scale Scaffolds. Procedia CIRP 2013;5:247-52. https://doi.org/10.1016/j.procir.2013.01.049
  20. Hollister SJ, Levy RA, Chu T-M, Halloran JW, Feinberg SE. An image- based approach for designing and manufacturing craniofacial scaffolds. Int. J. Oral Maxillofac. Surg. 2000;29(1)67-71. https://doi.org/10.1016/S0901-5027(00)80129-0
  21. Sughanthy AP, Ansari MNMNM, Siva APS, Ansari MNMNM. A review on bone scaffold fabrication methods. Int. Res. J. Eng. Technol. 2015;2(6)1232-8.
  22. Mullender M, El Haj a J, Yang Y, a van Duin M, Burger EH, Klein- Nulend J. Mechanotransduction of bone cells in vitro: mechanobiology of bone tissue. Med. Biol. Eng. Comput. 2004;42(1)14-21. https://doi.org/10.1007/BF02351006
  23. Adachi T, Aonuma Y, Ito S, Tanaka M, Hojo M, Takano-Yamamoto T, Kamioka H. Osteocyte calcium signaling response to bone matrix deformation. J. Biomech. 2009;42(15)2507-12. https://doi.org/10.1016/j.jbiomech.2009.07.006
  24. Alkhader M, Vural M. Mechanical response of cellular solids: role of cellular topology and microstructural irregularity. Int. J. Eng. Sci. 2008;46(10)1035-51. https://doi.org/10.1016/j.ijengsci.2008.03.012
  25. Wang X, Wenk E, Zhang X, Meinel L, Vunjak-Novakovic G, Kaplan DL. Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering. J. Control Release 2009;134(2)81-90. https://doi.org/10.1016/j.jconrel.2008.10.021
  26. Turing AM. The chemical basis of morphogenesis. Philos. Trans. R Soc. 1957;237:37-72.
  27. Kondo S, Miura T. Reaction-diffusion model as a framework for understanding biological pattern formation. Science 2010;29(5999)1616-20.
  28. Crampin EJ, Maini PK. Reaction-diffusion models for biological pattern formation. Methods Appl. Anal. 2001;8(3)415-28.
  29. Tezuka K, Wada Y, Takahashi A, Kikuchi M. Computer-simulated bone architecture in a simple bone-remodeling model based on a reaction-diffusion system. J. Bone Mineral Metab. 2005;23(1)1-7. https://doi.org/10.1007/s00774-004-0533-z
  30. Courtin B, Perault A, Staub J. A reaction-diffusion model for trabecular architecture of embryonic periosteal long bone. Complex Int. 1997;04: 1-17.
  31. Garzon-Alvarado D, Garcia-Aznar JM, Doblare M. Appearance and location of secondary ossification centres may be explained by a reaction-diffusion mechanism. Comput. Biol. Med. 2009;39(6)554-61. https://doi.org/10.1016/j.compbiomed.2009.03.012
  32. Hepburn I, Chen W, Wils S, De Schutter E. STEPS: efficient simulation of stochastic reaction-diffusion models in realistic morphologies. BMC Syst. Biol. 2012;6(1)36. https://doi.org/10.1186/1752-0509-6-36
  33. Garzon-Alvarado DA, Garcia-Aznar JM, Doblare M. A reaction-diffusion model for long bones growth. Biomech. Model Mechanobiol. 2009;8(5)381-95. https://doi.org/10.1007/s10237-008-0144-z
  34. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005;26:5474-91. https://doi.org/10.1016/j.biomaterials.2005.02.002
  35. Chen Q, Zhu C, Thouas G a. Progress and challenges in biomaterials used for bone tissue engineering: bioactive glasses and elastomeric composites. Prog. Biomater. 2012;1(1)22.
  36. Wahl DA, Czernuszka JT. Collagen-hydroxyapatite composites for hard tissue repair. Eur. Cell. Mater. 2006;11:43-56. https://doi.org/10.22203/eCM.v011a06
  37. Chappard D, Terranova L, Mallet R, Mercier P. 3D porous architecture of stacks of ${\beta}$-tcp granules compared with that of trabecular bone: a microCT, vector analysis, and compression study. Front. Endocrinol. 2015;6(161)8.
  38. Garzon-Alvarado DA, Velasco MA, Narvaez-Tovar CA. Self-assembled scaffolds using reaction-diffusion systems: a hypothesis for bone regeneration. J. Mech. Med. Biol. 2011;11(01)1-36. https://doi.org/10.1142/S0219519410003617
  39. Leppanen T, Karttunen M, Kaski K. A new dimension to turing patterns. Physica D 2002;169:35-44.
  40. Maini PK. Spatial pattern formation in chemical and biological systems. J. Chem. Soc, Faraday Trans. 1997;93(20)3601-10. https://doi.org/10.1039/a702602a
  41. Gierer A, Meinhardt H. A theory of biological pattern formation. Kybernetik 1972;12(1)30-9. https://doi.org/10.1007/BF00289234
  42. Miyazawa S, Okamoto M, Kondo S. Blending of animal colour patterns by hybridization. Nat. Commun. 2010;1(66)6.
  43. De Wit A, Borckmans P, Dewel G. Twist grain boundaries in three-dimensional lamellar turing structures. Proc. Natl. Acad. Sci. USA 1997;94(24)12765-8. https://doi.org/10.1073/pnas.94.24.12765
  44. Levesque SG, Lim RM, Shoichet MS. Macroporous interconnected dextran scaffolds of controlled porosity for tissue-engineering applica-tions. Biomaterials 2005;26(35)7436-46. https://doi.org/10.1016/j.biomaterials.2005.05.054
  45. Almeida HA, Bartolo PJ. Design of tissue engineering scaffolds based on hyperbolic surfaces: structural numerical evaluation. Med. Eng. Phys. 2014;36(8)1033-40. https://doi.org/10.1016/j.medengphy.2014.05.006
  46. Lorensen WE, Cline HE. Marching cubes: a high resolution 3D surface construction algorithm. ACM SIGGRAPH Comput. Graph 1987;21(4)163-9.
  47. Murphy CM, Haugh MG, O'Brien FJ. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 2010;31(3)461-6. https://doi.org/10.1016/j.biomaterials.2009.09.063
  48. Leong KF, Cheah CM, Chua CK. Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 2003;24(13)2363-78. https://doi.org/10.1016/S0142-9612(03)00030-9
  49. Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J. Biol. Eng. 2015;9(1)4. https://doi.org/10.1186/s13036-015-0001-4
  50. Bibb R, Thompson D, Winder J. Computed tomography characterisation of additive manufacturing materials. Med. Eng. Phys. 2011;33(5)590-6. https://doi.org/10.1016/j.medengphy.2010.12.015
  51. Woodard JR, Hilldore AJ, Lan SK, Park CJ, Morgan AW, Eurell JAC, Clark SG, Wheeler MB, Jamison RD, Wagoner Johnson AJ. The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity. Biomaterials 2007;28(1)45-54. https://doi.org/10.1016/j.biomaterials.2006.08.021
  52. Dutta Roy T, Simon JL, Ricci JL, Rekow ED, Thompson VP, Parsons JR. Performance of hydroxyapatite bone repair scaffolds created via three-dimensional fabrication techniques. J. Biomed. Mater. Res. Part A 2003;67(4)1228-37.
  53. Chu TMG, Orton DG, Hollister SJ, Feinberg SE, Halloran JW. Mechan-ical and in vivo performance of hydroxyapatite implants with controlled architectures. Biomaterials 2002;23(5)1283-93. https://doi.org/10.1016/S0142-9612(01)00243-5
  54. Mandal BB, Grinberg A, Gil ES, Panilaitis B, Kaplan DL. High-strength silk protein scaffolds for bone repair. Proc. Natl. Acad. Sci. USA 2012;109(20)7699-704. https://doi.org/10.1073/pnas.1119474109
  55. Kunzler TP, Drobek T, Schuler M, Spencer ND. Systematic study of osteoblast and fibroblast response to roughness by means of surface-morphology gradients. Biomaterials 2007;28(13)2175-82. https://doi.org/10.1016/j.biomaterials.2007.01.019
  56. Lenhert S, Meier M-B, Meyer U, Chi L, Wiesmann HP. Osteoblast alignment, elongation and migration on grooved polystyrene surfaces patterned by Langmuir-Blodgett lithography. Biomaterials 2005;26(5)563-70. https://doi.org/10.1016/j.biomaterials.2004.02.068
  57. Oliveira AL, Sun L, Kim HJ, Hu X, Rice W, Kluge J, Reis RL, Kaplan DL. Aligned silk-based 3-D architectures for contact guidance in tissue engineering. Acta Biomater. 2012;8(4)1530-42. https://doi.org/10.1016/j.actbio.2011.12.015
  58. Luczynski KW, Brynk T, Ostrowska B, Swieszkowski W, Reihsner R, Hellmich C. Consistent quasistatic and acoustic elasticity determination of poly-L-lactide-based rapid-prototyped tissue engineering scaffolds. J. Biomed. Mater. Res. Part A 2013;101(1)138-44.
  59. Cowin SC, Cardoso L. Fabric dependence of wave propagation in anisotropic porous media. Biomech. Model. Mechanobiol. 2011;10(1)39-65. https://doi.org/10.1007/s10237-010-0217-7
  60. Lakatos E, Magyar L, Bojtar I. Material properties of the mandibular trabecular bone ID 470539. J. Med. Eng. 2014;2014:7. (Article ID 470539).
  61. Burr DB, Martin RB, Schaffler MB, Radin EL. Bone remodeling in response to in vivo fatigue microdamage. J. Biomech. 1985;18(3)189-200. https://doi.org/10.1016/0021-9290(85)90204-0
  62. Frost H. The Laws of Bone Structure, 1st ed., Springfield, Ill: Charles C Thomas Publishers; 1964.
  63. Pauwels F. A new theory on the influence of mechanical stimuli on the differentiation of supporting tissue. Z. Anat. Entwicklungsgeschichte 1960;121:478-515. https://doi.org/10.1007/BF00523401
  64. McNamara LM, Prendergast PJ. Bone remodelling algorithms incorpor-ating both strain and microdamage stimuli. J Biomech. 2007;40(6)1381-91. https://doi.org/10.1016/j.jbiomech.2006.05.007
  65. Hayes WC, Piazza SJ, Zysset PK. Biomechanics of fracture risk prediction of the hip and spine by quantitative computed tomography. Radiol. Clin. North Am. 1991;29(1)1-18.

피인용 문헌

  1. Towards a CAD-based automatic procedure for patient specific cutting guides to assist sternal osteotomies in pectus arcuatum surgical correction vol.6, pp.1, 2016, https://doi.org/10.1016/j.jcde.2018.01.001
  2. Mechanobiological Approach to Design and Optimize Bone Tissue Scaffolds 3D Printed with Fused Deposition Modeling: A Feasibility Study vol.13, pp.3, 2016, https://doi.org/10.3390/ma13030648
  3. Effect of Passive Support of the Spinal Muscles on the Biomechanics of a Lumbar Finite Element Model vol.10, pp.18, 2020, https://doi.org/10.3390/app10186278
  4. Simulated tissue growth in tetragonal lattices with mechanical stiffness tuned for bone tissue engineering vol.138, pp.None, 2016, https://doi.org/10.1016/j.compbiomed.2021.104913