참고문헌
- Weiner S, Wagner HD. The material bone: structure-mechanical function relations. Annu. Rev. Mater. Sci. 1998;28(1)271-98. https://doi.org/10.1146/annurev.matsci.28.1.271
- Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature 2014;505(7483)327-34. https://doi.org/10.1038/nature12984
- Raposo JF, Sobrinho LG, Ferreira HG. A minimal mathematical model of calcium homeostasis. J. Clin. Endocrinol. Metab. 2002;87(9)4330-40. https://doi.org/10.1210/jc.2002-011870
- Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit. Rev. Biomed. Eng. 2012;40(5)363-408. https://doi.org/10.1615/CritRevBiomedEng.v40.i5.10
- Velasco MA, Narvaez-tovar CA, Garzon-alvarado DA. Design, Materials, and Mechanobiology of Biodegradable Scaffolds for Bone Tissue Engineering Article ID 729076. Biomed. Res. Int. 2015;2015: 21. (Article ID 729076).
- Ikada Y. Challenges in tissue engineering. Interface 2006;3(10)589-601.
- Burg KJ, Porter S, Kellam JF. Biomaterial developments for bone tissue engineering. Biomaterials 2000;21(23)2347-59. https://doi.org/10.1016/S0142-9612(00)00102-2
- Giannitelli SM, Accoto D, Trombetta M, Rainer A. Current trends in the design of scaffolds for computer-aided tissue engineering. Acta Biomater. 2014;10(2)580-94. https://doi.org/10.1016/j.actbio.2013.10.024
- Chua CK, Leong KF, Cheah CM, Chua SW. Development of a tissue engineering scaffold structure library for rapid prototyping. Part 2 : Parametric library and assembly program. Adv. Manuf. Technol. 2003;21: 302-12. https://doi.org/10.1007/s001700300035
- Yang N, Zhou K. Effective method for multi-scale gradient porous scaffold design and fabrication. Mater. Sci. Eng. C, Mater. Biol. Appl. 2014;43:502-5. https://doi.org/10.1016/j.msec.2014.07.052
- Sutradhar A, Paulino G. Topological optimization for designing patient-specific large craniofacial segmental bone replacements. Proc. Natl. Acad. Sci. 2010;107(30)13222-7. https://doi.org/10.1073/pnas.1001208107
- Goncalves Coelho P, Rui Fernandes P, Carrico Rodrigues H. Multiscale modeling of bone tissue with surface and permeability control. J. Biomech. 2011;44(2)321-9. https://doi.org/10.1016/j.jbiomech.2010.10.007
- Coelho PG, Hollister SJ, Flanagan CL, Fernandes PR. Bioresorbable scaffolds for bone tissue engineering: optimal design, fabrication, mechanical testing and scale-size effects analysis. Med. Eng. Phys. 2015;37(3)287-96. https://doi.org/10.1016/j.medengphy.2015.01.004
- Dias MR, Guedes JM, Flanagan CL, Hollister SJ, Fernandes PR. Optimization of scaffold design for bone tissue engineering: a computa-tional and experimental study. Med. Eng. Phys. 2014;36(4)448-57. https://doi.org/10.1016/j.medengphy.2014.02.010
- Woo Jung J, Yi H-G, Kang T-Y, Yong W-J, Jin S, Yun W-S, Cho D-W. Evaluation of the effective diffusivity of a freeform fabricated scaffold using computational simulation. J. Biomech. Eng. 2013;135(8)7.
- Provin C, Takano K, Sakai Y, Fujii T, Shirakashi R. A method for the design of 3D scaffolds for high-density cell attachment and determination of optimum perfusion culture conditions. J. Biomech. 2008;41(7)1436-49. https://doi.org/10.1016/j.jbiomech.2008.02.025
- Starly B, Sun W. Internal Scaffold Architecture Designs using Linden- mayer Systems. Comput-Aided Des. Appl. 2007;4(1-4)395-403. https://doi.org/10.1080/16864360.2007.10738559
- Bashoor-Zadeh M, Baroud G, Bohner M. Geometric analysis of porous bone substitutes using micro-computed tomography and fuzzy distance transform. Acta Biomater. 2010;6(3)864-75. https://doi.org/10.1016/j.actbio.2009.08.007
- Podshivalov L, Gomes CM, Zocca A, Guenster J, Bar-Yoseph P, Fischer A. Design, Analysis and Additive Manufacturing of Porous Structures for Biocompatible Micro-Scale Scaffolds. Procedia CIRP 2013;5:247-52. https://doi.org/10.1016/j.procir.2013.01.049
- Hollister SJ, Levy RA, Chu T-M, Halloran JW, Feinberg SE. An image- based approach for designing and manufacturing craniofacial scaffolds. Int. J. Oral Maxillofac. Surg. 2000;29(1)67-71. https://doi.org/10.1016/S0901-5027(00)80129-0
- Sughanthy AP, Ansari MNMNM, Siva APS, Ansari MNMNM. A review on bone scaffold fabrication methods. Int. Res. J. Eng. Technol. 2015;2(6)1232-8.
- Mullender M, El Haj a J, Yang Y, a van Duin M, Burger EH, Klein- Nulend J. Mechanotransduction of bone cells in vitro: mechanobiology of bone tissue. Med. Biol. Eng. Comput. 2004;42(1)14-21. https://doi.org/10.1007/BF02351006
- Adachi T, Aonuma Y, Ito S, Tanaka M, Hojo M, Takano-Yamamoto T, Kamioka H. Osteocyte calcium signaling response to bone matrix deformation. J. Biomech. 2009;42(15)2507-12. https://doi.org/10.1016/j.jbiomech.2009.07.006
- Alkhader M, Vural M. Mechanical response of cellular solids: role of cellular topology and microstructural irregularity. Int. J. Eng. Sci. 2008;46(10)1035-51. https://doi.org/10.1016/j.ijengsci.2008.03.012
- Wang X, Wenk E, Zhang X, Meinel L, Vunjak-Novakovic G, Kaplan DL. Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering. J. Control Release 2009;134(2)81-90. https://doi.org/10.1016/j.jconrel.2008.10.021
- Turing AM. The chemical basis of morphogenesis. Philos. Trans. R Soc. 1957;237:37-72.
- Kondo S, Miura T. Reaction-diffusion model as a framework for understanding biological pattern formation. Science 2010;29(5999)1616-20.
- Crampin EJ, Maini PK. Reaction-diffusion models for biological pattern formation. Methods Appl. Anal. 2001;8(3)415-28.
- Tezuka K, Wada Y, Takahashi A, Kikuchi M. Computer-simulated bone architecture in a simple bone-remodeling model based on a reaction-diffusion system. J. Bone Mineral Metab. 2005;23(1)1-7. https://doi.org/10.1007/s00774-004-0533-z
- Courtin B, Perault A, Staub J. A reaction-diffusion model for trabecular architecture of embryonic periosteal long bone. Complex Int. 1997;04: 1-17.
- Garzon-Alvarado D, Garcia-Aznar JM, Doblare M. Appearance and location of secondary ossification centres may be explained by a reaction-diffusion mechanism. Comput. Biol. Med. 2009;39(6)554-61. https://doi.org/10.1016/j.compbiomed.2009.03.012
- Hepburn I, Chen W, Wils S, De Schutter E. STEPS: efficient simulation of stochastic reaction-diffusion models in realistic morphologies. BMC Syst. Biol. 2012;6(1)36. https://doi.org/10.1186/1752-0509-6-36
- Garzon-Alvarado DA, Garcia-Aznar JM, Doblare M. A reaction-diffusion model for long bones growth. Biomech. Model Mechanobiol. 2009;8(5)381-95. https://doi.org/10.1007/s10237-008-0144-z
- Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005;26:5474-91. https://doi.org/10.1016/j.biomaterials.2005.02.002
- Chen Q, Zhu C, Thouas G a. Progress and challenges in biomaterials used for bone tissue engineering: bioactive glasses and elastomeric composites. Prog. Biomater. 2012;1(1)22.
- Wahl DA, Czernuszka JT. Collagen-hydroxyapatite composites for hard tissue repair. Eur. Cell. Mater. 2006;11:43-56. https://doi.org/10.22203/eCM.v011a06
-
Chappard D, Terranova L, Mallet R, Mercier P. 3D porous architecture of stacks of
${\beta}$ -tcp granules compared with that of trabecular bone: a microCT, vector analysis, and compression study. Front. Endocrinol. 2015;6(161)8. - Garzon-Alvarado DA, Velasco MA, Narvaez-Tovar CA. Self-assembled scaffolds using reaction-diffusion systems: a hypothesis for bone regeneration. J. Mech. Med. Biol. 2011;11(01)1-36. https://doi.org/10.1142/S0219519410003617
- Leppanen T, Karttunen M, Kaski K. A new dimension to turing patterns. Physica D 2002;169:35-44.
- Maini PK. Spatial pattern formation in chemical and biological systems. J. Chem. Soc, Faraday Trans. 1997;93(20)3601-10. https://doi.org/10.1039/a702602a
- Gierer A, Meinhardt H. A theory of biological pattern formation. Kybernetik 1972;12(1)30-9. https://doi.org/10.1007/BF00289234
- Miyazawa S, Okamoto M, Kondo S. Blending of animal colour patterns by hybridization. Nat. Commun. 2010;1(66)6.
- De Wit A, Borckmans P, Dewel G. Twist grain boundaries in three-dimensional lamellar turing structures. Proc. Natl. Acad. Sci. USA 1997;94(24)12765-8. https://doi.org/10.1073/pnas.94.24.12765
- Levesque SG, Lim RM, Shoichet MS. Macroporous interconnected dextran scaffolds of controlled porosity for tissue-engineering applica-tions. Biomaterials 2005;26(35)7436-46. https://doi.org/10.1016/j.biomaterials.2005.05.054
- Almeida HA, Bartolo PJ. Design of tissue engineering scaffolds based on hyperbolic surfaces: structural numerical evaluation. Med. Eng. Phys. 2014;36(8)1033-40. https://doi.org/10.1016/j.medengphy.2014.05.006
- Lorensen WE, Cline HE. Marching cubes: a high resolution 3D surface construction algorithm. ACM SIGGRAPH Comput. Graph 1987;21(4)163-9.
- Murphy CM, Haugh MG, O'Brien FJ. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 2010;31(3)461-6. https://doi.org/10.1016/j.biomaterials.2009.09.063
- Leong KF, Cheah CM, Chua CK. Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 2003;24(13)2363-78. https://doi.org/10.1016/S0142-9612(03)00030-9
- Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J. Biol. Eng. 2015;9(1)4. https://doi.org/10.1186/s13036-015-0001-4
- Bibb R, Thompson D, Winder J. Computed tomography characterisation of additive manufacturing materials. Med. Eng. Phys. 2011;33(5)590-6. https://doi.org/10.1016/j.medengphy.2010.12.015
- Woodard JR, Hilldore AJ, Lan SK, Park CJ, Morgan AW, Eurell JAC, Clark SG, Wheeler MB, Jamison RD, Wagoner Johnson AJ. The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity. Biomaterials 2007;28(1)45-54. https://doi.org/10.1016/j.biomaterials.2006.08.021
- Dutta Roy T, Simon JL, Ricci JL, Rekow ED, Thompson VP, Parsons JR. Performance of hydroxyapatite bone repair scaffolds created via three-dimensional fabrication techniques. J. Biomed. Mater. Res. Part A 2003;67(4)1228-37.
- Chu TMG, Orton DG, Hollister SJ, Feinberg SE, Halloran JW. Mechan-ical and in vivo performance of hydroxyapatite implants with controlled architectures. Biomaterials 2002;23(5)1283-93. https://doi.org/10.1016/S0142-9612(01)00243-5
- Mandal BB, Grinberg A, Gil ES, Panilaitis B, Kaplan DL. High-strength silk protein scaffolds for bone repair. Proc. Natl. Acad. Sci. USA 2012;109(20)7699-704. https://doi.org/10.1073/pnas.1119474109
- Kunzler TP, Drobek T, Schuler M, Spencer ND. Systematic study of osteoblast and fibroblast response to roughness by means of surface-morphology gradients. Biomaterials 2007;28(13)2175-82. https://doi.org/10.1016/j.biomaterials.2007.01.019
- Lenhert S, Meier M-B, Meyer U, Chi L, Wiesmann HP. Osteoblast alignment, elongation and migration on grooved polystyrene surfaces patterned by Langmuir-Blodgett lithography. Biomaterials 2005;26(5)563-70. https://doi.org/10.1016/j.biomaterials.2004.02.068
- Oliveira AL, Sun L, Kim HJ, Hu X, Rice W, Kluge J, Reis RL, Kaplan DL. Aligned silk-based 3-D architectures for contact guidance in tissue engineering. Acta Biomater. 2012;8(4)1530-42. https://doi.org/10.1016/j.actbio.2011.12.015
- Luczynski KW, Brynk T, Ostrowska B, Swieszkowski W, Reihsner R, Hellmich C. Consistent quasistatic and acoustic elasticity determination of poly-L-lactide-based rapid-prototyped tissue engineering scaffolds. J. Biomed. Mater. Res. Part A 2013;101(1)138-44.
- Cowin SC, Cardoso L. Fabric dependence of wave propagation in anisotropic porous media. Biomech. Model. Mechanobiol. 2011;10(1)39-65. https://doi.org/10.1007/s10237-010-0217-7
- Lakatos E, Magyar L, Bojtar I. Material properties of the mandibular trabecular bone ID 470539. J. Med. Eng. 2014;2014:7. (Article ID 470539).
- Burr DB, Martin RB, Schaffler MB, Radin EL. Bone remodeling in response to in vivo fatigue microdamage. J. Biomech. 1985;18(3)189-200. https://doi.org/10.1016/0021-9290(85)90204-0
- Frost H. The Laws of Bone Structure, 1st ed., Springfield, Ill: Charles C Thomas Publishers; 1964.
- Pauwels F. A new theory on the influence of mechanical stimuli on the differentiation of supporting tissue. Z. Anat. Entwicklungsgeschichte 1960;121:478-515. https://doi.org/10.1007/BF00523401
- McNamara LM, Prendergast PJ. Bone remodelling algorithms incorpor-ating both strain and microdamage stimuli. J Biomech. 2007;40(6)1381-91. https://doi.org/10.1016/j.jbiomech.2006.05.007
- Hayes WC, Piazza SJ, Zysset PK. Biomechanics of fracture risk prediction of the hip and spine by quantitative computed tomography. Radiol. Clin. North Am. 1991;29(1)1-18.
피인용 문헌
- Towards a CAD-based automatic procedure for patient specific cutting guides to assist sternal osteotomies in pectus arcuatum surgical correction vol.6, pp.1, 2016, https://doi.org/10.1016/j.jcde.2018.01.001
- Mechanobiological Approach to Design and Optimize Bone Tissue Scaffolds 3D Printed with Fused Deposition Modeling: A Feasibility Study vol.13, pp.3, 2016, https://doi.org/10.3390/ma13030648
- Effect of Passive Support of the Spinal Muscles on the Biomechanics of a Lumbar Finite Element Model vol.10, pp.18, 2020, https://doi.org/10.3390/app10186278
- Simulated tissue growth in tetragonal lattices with mechanical stiffness tuned for bone tissue engineering vol.138, pp.None, 2016, https://doi.org/10.1016/j.compbiomed.2021.104913