DOI QR코드

DOI QR Code

Material feature representation and identification with composite surfacelets

  • Huang, Wei (HP Labs, Palo Alto) ;
  • Wang, Yan (School of Mechanical Engineering, Georgia Institute of Technology) ;
  • Rosen, David W. (School of Mechanical Engineering, Georgia Institute of Technology)
  • Received : 2015.11.14
  • Accepted : 2016.06.26
  • Published : 2016.10.01

Abstract

Computer-aided materials design requires new modeling approaches to characterize and represent fine-grained geometric structures and material compositions at multiple scales. Recently, a dual-Rep approach was developed to model materials microstructures based on a new basis function, called surfacelet. As a combination of implicit surface and wavelets, surfacelets can efficiently identify and represent planar, cylindrical, and ellipsoidal geometries in material microstructures and describe the distribution of compositions and properties. In this paper, these primitive surfacelets are extended and composite surfacelets are proposed to model more complex geometries. Composite surfacelets are constructed by Boolean operations on the primitives. The surfacelet transform is applied to match geometric features in three-dimensional images. The composition of the material near the identified features can then be modeled. A cubic surfacelet and a v-joint surfacelet are developed to demonstrate the reverse engineering process of retrieving material compositions from material images.

Keywords

References

  1. Wang Y, Rosen DW. Multiscale heterogeneous modeling with surface-lets. Comput-Aided Des Appl 2010;7(5)759-76. https://doi.org/10.3722/cadaps.2010.759-776
  2. Huang W. Surfacelet based heterogeneous materials modeling. School of Mechanical Engineering, Georgia Institute of Technology; 2014.
  3. Huang W, Wang Y, Rosen DW. Inverse surfacelet transform for image reconstruction with constrained-conjugate gradient methods. J Comput Inf Sci Eng 2014;14(2)021005. https://doi.org/10.1115/1.4026376
  4. Kou XY, Tan ST. Heterogeneous object modeling: a review. Comput-Aided Des 2007;39(4)284-301. https://doi.org/10.1016/j.cad.2006.12.007
  5. Bhashyam S, Shin KH, Dutta D. An integrated CAD system for design of heterogeneous objects. Rapid Prototyp J 2000;6(2)119-35. https://doi.org/10.1108/13552540010323547
  6. Koenig O, Fadel G. Application of genetic algorithms in the design of multi-material structures manufactured in rapid prototyping. In: Proceed-ings of the 10th annual solid freeform fabrication symposium; August 1999.
  7. Kumar V, Burns D, Dutta D, Hoffmann C. A framework for object modeling. Comput-Aided Des 1999;31(9)541-56. https://doi.org/10.1016/S0010-4485(99)00051-2
  8. Qian X, Dutta D. Physics-based modeling for heterogeneous objects. J Mech Des 2003;125(3)416-27. https://doi.org/10.1115/1.1582877
  9. Liu H, Maekawa T, Patrikalakis NM, Sachs EM, Cho W. Methods for feature-based design of heterogeneous solids. Comput-Aided Des 2004;36(12)1141-59. https://doi.org/10.1016/j.cad.2003.11.001
  10. Siu YK, Tan ST. 'Source-based' heterogeneous solid modeling. Comput- Aided Des 2002;34(1)41-55. https://doi.org/10.1016/S0010-4485(01)00046-X
  11. Qian X, Dutta D. Feature-based design for heterogeneous objects. Comput-Aided Des 2004;36(12)1263-78. https://doi.org/10.1016/j.cad.2004.01.012
  12. Samanta K, Koc B. Feature-based design and material blending for free-form heterogeneous object modeling. Comput-Aided Des 2005;37(3)287-305. https://doi.org/10.1016/j.cad.2004.03.005
  13. Martin T, Cohen E, Kirby RM. Volumetric parameterization and trivariate B-spline fitting using harmonic functions. Comput Aided Geom Des 2009;26(6)648-64. https://doi.org/10.1016/j.cagd.2008.09.008
  14. Park SM, Crawford RH, Beaman JJ. Functionally gradient material representation by volumetric multi-texturing for solid freeform fabrica-tion. In: Proceedings of the 11th annual solid freeform fabrication symposium; August 2011.
  15. Biswas A, Shapiro V, Tsukanov I. Heterogeneous material modeling with distance fields. Comput Aided Geom Des 2004;21(3)215-42. https://doi.org/10.1016/j.cagd.2003.08.002
  16. Wang Y. Periodic surface modeling for computer aided nano design. Comput-Aided Des 2007;39(3)179-89. https://doi.org/10.1016/j.cad.2006.09.005
  17. Fryazinov O, Vilbrandt T, Pasko A. Multi-scale space-variant FRep cellular structures. Comput-Aided Des 2013;45(1)26-34. https://doi.org/10.1016/j.cad.2011.09.007
  18. Yoo DJ. Heterogeneous porous scaffold design for tissue engineering using triply periodic minimal surfaces. Int J Precis Eng Manuf 2012;13(4)527-37. https://doi.org/10.1007/s12541-012-0068-5
  19. Pasko A, Fryazinov O, Vilbrandt T, Fayolle PA, Adzhiev V. Procedural function-based modelling of volumetric microstructures. Graph Model 2011;73(5)165-81. https://doi.org/10.1016/j.gmod.2011.03.001
  20. Mishnaevsky LL. Automatic voxel-based generation of 3D microstruc-tural FE models and its application to the damage analysis of composites. Mater Sci Eng A 2005;407(1)11-23. https://doi.org/10.1016/j.msea.2005.06.047
  21. Huang W, Didari S, Wang Y, Harris TA. Generalized periodic surface model and its application in designing fibrous porous media. Eng Comput 2015;32(1)7-36. https://doi.org/10.1108/EC-03-2013-0085
  22. Liu X, Shapiro V. Random heterogeneous materials via texture synthesis. Comput Mater Sci 2015;99:177-89. https://doi.org/10.1016/j.commatsci.2014.12.017
  23. Ziou D, Tabbone S. Edge detection techniques: an overview. Int J Pattern Recognit Image Anal 1998;8(4)537-59.
  24. Park JM, Murphey YL. Edge detection in grayscale, color, and range images. Wiley Encyclopedia of Computer Science and Engineering; 2008.
  25. Radon J. On the determination of functions from their integral values along certain manifolds. IEEE Trans Med Imaging 1986;5(4)170-6. https://doi.org/10.1109/TMI.1986.4307775
  26. Leavers VF, Boyce JF. The Radon transform and its application to shape parameterization in machine vision. Image Vision Comput 1987;5(2)161-6. https://doi.org/10.1016/0262-8856(87)90044-8
  27. Rosen DW, Jeong N, Wang Y. A method for reverse engineering of material microstructure for heterogeneous CAD. Comput-Aided Des 2013;45(7)1068-78. https://doi.org/10.1016/j.cad.2013.01.004
  28. Niezgoda SR, Kalidindi SR, Hu X, Cingara GA, Wilkinson DS, Jain M, Wu P, Mishra RK, Arafin M, Szpunar J. Applications of the phase-coded generalized hough transform to feature detection, analysis, and segmenta-tion of digital microstructures. Comput Mater Contin 2010;14(2)79-98.
  29. MacSleyne J, Uchic MD, Simmons JP, De Graef M. Three-dimensional analysis of secondary ${\gamma}'$ precipitates in Rene-88 DT and UMF-20 superalloys. Acta Mater 2009;57(20)6251-67. https://doi.org/10.1016/j.actamat.2009.08.053
  30. Xue F, Li H, Zhu Y, Xiong S, Zhang X, Wang T, Liang X, Qian Y. Solvothermal synthesis and photoluminescence properties of $BiPO_4$ nano-cocoons and nanorods with different phases. J Solid State Chem 2009;182(6)1396-400. https://doi.org/10.1016/j.jssc.2009.02.031
  31. Chen J, Qiao Z, Wang L, Nie F, Yang G, Huang H. Fabrication of rectangular 2,6-diamino-3,5-dinitropyrazine-1-oxide microtubes. Mater Lett 2011;65(6)1018-21. https://doi.org/10.1016/j.matlet.2011.01.005
  32. Konopka K, Olszowka-Myalska A, Szafran M. Ceramic-metal compo-sites with an interpenetrating network. Mater Chem Phys 2003;81(2)329-32. https://doi.org/10.1016/S0254-0584(02)00595-3
  33. Belavic D, Hrovat M, Pavlin M, Holc J. Some results obtained with diffusion patterning technology. Microelectron Int 2001;18(1)7-18. https://doi.org/10.1108/13565360110380062
  34. Brzozowski E, Castro MS, Foschini CR, Stojanovic B. Secondary phases in Nb-doped $BaTiO_3$ ceramics. Ceram Int 2002;28(7)773-7. https://doi.org/10.1016/S0272-8842(02)00042-1
  35. Hao L, Lawrence J. $CO_2$ laser induced microstructure features in magnesia partially stabilised zirconia bioceramic and effects thereof on the wettability characteristics. Mater Sci Eng A 2004;364(1)171-81. https://doi.org/10.1016/j.msea.2003.08.011
  36. Suzuki T, Funahashi Y, Yamaguchi T, Fujishiro Y, Awano M. Devel-opment of microtubular SOFCs. J Fuel Cell Sci Technol 2008;5:3.
  37. Rvachev VL. Theory of R-functions and some applications. (Naukova Dumka, 1982). [in Russian].
  38. Shapiro V. Real functions for representation of rigid solids. Comput Aided Geom Des 1994;11(2)153-75. https://doi.org/10.1016/0167-8396(94)90030-2
  39. TEM image of nano-C60 particle, available at .
  40. Gu Y, Li M, Wang J, Zhang Z. Characterization of the interphase in carbon fiber/polymer composites using a nanoscale dynamic mechanical imaging technique. Carbon 2010;48(11)3229-35. https://doi.org/10.1016/j.carbon.2010.05.008

Cited by

  1. A Multiscale Materials Modeling Method With Seamless Zooming Capability Based on Surfacelets1 vol.17, pp.2, 2016, https://doi.org/10.1115/1.4034999
  2. Representation of Graded Materials and Structures to Support Tolerance Specification for Additive Manufacturing Application vol.19, pp.2, 2019, https://doi.org/10.1115/1.4042327
  3. Iso-material contour representation for process planning of heterogeneous object model vol.7, pp.4, 2016, https://doi.org/10.1093/jcde/qwz001
  4. Fuzzy surfacelet neural network evaluation model optimized by adaptive dragonfly algorithm for pipeline network integrity management vol.113, pp.no.pa, 2021, https://doi.org/10.1016/j.asoc.2021.107862