DOI QR코드

DOI QR Code

The Loads and Biogeochemical Properties of Riverine Carbon

하천 탄소의 유출량과 생지화학적 특성

  • Oh, Neung-Hwan (Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University)
  • 오능환 (서울대학교 환경대학원 환경계획학과)
  • Received : 2016.10.15
  • Accepted : 2016.10.29
  • Published : 2016.12.31

Abstract

Although rivers cover only 0.5% of the total land area on the Earth, they are windows that show the integrated effects of watershed biogeochemistry. Studies on the loads and properties of riverine carbon have been conducted because they are directly linked with drinking water quality, and because regional or global net ecosystem production (NEP) can be overestimated, unless riverine carbon loads are subtracted. Globally, ${\sim}0.8-1.5Pg\;yr^{-1}$ and ${\sim}0.62-2.1Pg\;yr^{-1}$ of carbon are transported from terrestrial ecosystems to the ocean via rivers and from inland waters to the atmosphere, respectively. Concentrations, ${\delta}^{13}C$, and fluorescence spectra of riverine carbon have been investigated in South Korea to understand the spatiotemporal changes in the sources. Precipitation as well as land use/land cover can strongly influence the composition of riverine carbon, thus shifting the ratios among DIC, DOC, and POC, which could affect the concentrations, loads, and the degradability of adsorbed organic and inorganic toxic materials. A variety of analyses including $^{14}C$ and high resolution mass spectroscopy need to be employed to precisely define the sources and to quantify the degradability of riverine carbon. Long-term data on concentrations of major ions including alkalinity and daily discharge have been used to show direct evidence of ecosystem changes in the US. The current database managed by the Korean government could be improved further by integrating the data collected by individual researchers, and by adding the major components ions including DIC, DOC, and POC into the database.

하천이 차지하는 면적은 전체 육지 면적의 약 0.5%에 불과하지만, 하천수의 조성은 유역 환경의 생지화학적 변화를 집약적으로 반영하는 지표가 될 수 있다. 하천 탄소의 농도는 수질과 직접적인 관련이 있고, 또한, 하천을 통해 바다로 유출되는 탄소량을 순 생태계 생산량 (NEP)에서 빼주지 않으면 생태계 내 저장될 수 있는 탄소량이 과다 산정될 수 있기 때문에 하천의 탄소 유출량을 정확히 추정하려는 연구가 꾸준히 이뤄지고 있다. 전 세계적으로 하천을 통해 바다로 유출되는 총 탄소량은 약 $0.8{\sim}1.5Pg\;yr^{-1}$, 수체로부터 대기로 빠져나가는 양이 약 $0.62{\sim}2.1Pg\;yr^{-1}$로 추정된다. 우리나라의 하천 탄소에 대한 연구는 주로 수질과 관련된 유기탄소에 집중된 편이며, 농도, ${\delta}^{13}C$, 형광스펙트럼 분석 결과 강수량과 강수 세기 등 시간에 따른 차이와 토지 이용 등 공간적인 차이에 따라 다양한 성상의 탄소가 하천으로 유입되는 것으로 여겨진다. 인간의 토지이용과 기후변화의 영향으로 인한 탄소순환 동태의 변화는 하천의 총 탄소 함량뿐만 아니라 DIC, DOC, POC의 비율에도 변화를 불러오고, 이들과 함께 수체 내에서 이동하는 다양한 유기/무기 오염물질의 양과 분해도에도 영향을 줄 수 있다. 따라서, 기존의 분석 방법에 더해 탄소연대 측정과 초고분해능 질량 분석 등의 방법을 활용하여 하천 탄소의 기원, 변화, 분해 과정을 면밀히 유추하는 연구가 필요하다. 장기적으로, 넓은 유역을 대상으로 얻어진 하천 탄소의 성상별 농도와 일유량 자료는 유역 생태계의 변화를 추적하고, 자연적인 또는 인간에 의한 교란 때문에 일어나는 환경 변화를 예측하는 데 유용하게 쓰일 수 있다. 현재 정부가 운영 중인 수질측정망을 대상으로, 알칼리도를 포함한, 하천 탄소의 성상별 농도가 분석 항목에 추가되고, 일유량 자료와 개별 연구진이 얻은 연구결과를 포함하는 데이터베이스가 구축되어, 이러한 자료가 보다 효율적으로 활용될 수 있기를 바란다.

Keywords

References

  1. Aitkenhead, J.A. and W.H. McDowell. 2000. Soil C : N ratio as a predictor of annual riverine DOC flux at local and global scales. Global Biogeochemical Cycles 14: 127-138. https://doi.org/10.1029/1999GB900083
  2. Amiotte Suchet, P. and J.L. Probst. 1995. A global model for present-day atmospheric/soil $CO_2$ consumption by chemical erosion of continental rocks (GEM-$CO_2$). Tellus Series B-Chemical and Physical Meteorology 47: 273-280. https://doi.org/10.3402/tellusb.v47i1-2.16047
  3. Amiotte Suchet, P., J.L. Probst and W. Ludwig. 2003. Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil $CO_2$ uptake by continental weathering and alkalinity river transport to the oceans. Global Biogeochemical Cycles 17.
  4. Aufdenkampe, A.K., E. Mayorga, P.A. Raymond, J.M. Melack, S.C. Doney, S.R. Alin, R.E. Aalto and K. Yoo. 2011. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Frontiers in Ecology and the Environment 9: 53-60. https://doi.org/10.1890/100014
  5. Battin, T.J., S. Luyssaert, L.A. Kaplan, A.K. Aufdenkampe, A. Richter and L.J. Tranvik. 2009. The boundless carbon cycle. Nature Geoscience 2: 598-600. https://doi.org/10.1038/ngeo618
  6. Berner, R.A. 1982. Burial of organic carbon and pyrite sulfur in the modern ocean: Its geochemical and environmental significance. American Journal of Science 282: 451-473. https://doi.org/10.2475/ajs.282.4.451
  7. Berner, R.A., A.C. Lasaga and R.M. Garrels. 1983. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon-dioxide over the past 100 million years. American Journal of Science 283: 641-683. https://doi.org/10.2475/ajs.283.7.641
  8. Butman, D. and P. Raymond. 2011. Significant efflux of carbon dioxide from streams and rivers in the United States. Nature Geoscience 4: 839-842. https://doi.org/10.1038/ngeo1294
  9. Butman, D., S. Stackpoole, E. Stets, C.P. McDonald, D.W. Clow and R.G. Striegl. 2016. Aquatic carbon cycling in the conterminous United States and implications for terrestrial carbon accounting. Proceedings of the National Academy of Sciences of the United States of America 113: 58-63. https://doi.org/10.1073/pnas.1512651112
  10. Canadell, J.G., C. Le Quere, M.R. Raupach, C.B. Field, E.T. Buitenhuis, P. Ciais, T.J. Conway, N.P. Gillett, R.A. Houghton, and G. Marland. 2007. Contributions to accelerating atmospheric $CO_2$ growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences of the United States of America 104: 18866-18870. https://doi.org/10.1073/pnas.0702737104
  11. Clark, I.D. and P. Fritz. 1997. Environmental isotopes in hydrogeology. CRC Press/Lewis Publishers, Boca Raton, FL.
  12. Clarke, F.W. 1924. The Composition of the River and Lake Waters of the United States. United States Geological Survey Professional Paper 135. Government Printing Office, Washington, DC.
  13. Cole, J.J., Y.T. Prairie, N.F. Caraco, W.H. McDowell, L.J. Tranvik, R.G. Striegl, C.M. Duarte, P. Kortelainen, J.A. Downing, J.J. Middelburg and J. Melack. 2007. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems 10: 172-185. https://doi.org/10.1007/s10021-006-9013-8
  14. Cory, R.M., C.P. Ward, B.C. Crump and G.W. Kling. 2014. Sunlight controls water column processing of carbon in arctic fresh waters. Science 345: 925-928. https://doi.org/10.1126/science.1253119
  15. Dole, R.B. 1909. The Quality of Surface Waters in the United States. Part I. - Analyses of Waters East of the One Hundred Meridian. USGS Water-Supply Paper 236. Government Printing Office, Washington, D.C.
  16. Durr, H.H., M. Meybeck and S.H. Durr. 2005. Lithologic composition of the Earth's continental surfaces derived from a new digital map emphasizing riverine material transfer. Global Biogeochemical Cycles 19.
  17. Durr, H.H., M. Meybeck, J. Hartmann, G.G. Laruelle and V. Roubeix. 2011. Global spatial distribution of natural riverine silica inputs to the coastal zone. Biogeosciences 8: 597-620. https://doi.org/10.5194/bg-8-597-2011
  18. Gaillardet, J., B. Dupre, P. Louvat and C.J. Allegre. 1999. Global silicate weathering and $CO_2$ consumption rates deduced from the chemistry of large rivers. Chemical Geology 159: 3-30. https://doi.org/10.1016/S0009-2541(99)00031-5
  19. Gal, J.-K., M.-S. Kim, Y.-J. Lee, J. Seo and K.-H. Shin. 2012. Foodweb of aquatic ecosystem within the Tamjin River through the determination of carbon and nitrogen stable isotope ratios. Korean Journal of Limnology 45: 242-251.
  20. Galy, V., C. France-Lanord, O. Beyssac, P. Faure, H. Kudrass and F. Palhol. 2007. Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system. Nature 450: 407-410. https://doi.org/10.1038/nature06273
  21. Galy, V., B. Peucker-Ehrenbrink and T. Eglinton. 2015. Global carbon export from the terrestrial biosphere controlled by erosion. Nature 521: 204-207. https://doi.org/10.1038/nature14400
  22. Griffith, D.R., R.T. Barnes and P.A. Raymond. 2009. Inputs of fossil carbon from wastewater treatment plants to US rivers and oceans. Environmental Science & Technology 43: 5647-5651. https://doi.org/10.1021/es9004043
  23. Hartmann, J., N. Jansen, H.H. Duerr, S. Kempe and P. Koehler. 2009. Global $CO_2$-consumption by chemical weathering: What is the contribution of highly active weathering regions? Global and Planetary Change 69: 185-194. https://doi.org/10.1016/j.gloplacha.2009.07.007
  24. Holland, H.D. 1978. The chemistry of the atmosphere and oceans. Wiley, New York.
  25. Hong, S.U. 1969. Limnological comparison of the South and North-Han River. Korean Journal of Limnology 2: 51-67.
  26. Hotchkiss, E.R., R.O. Hall, R.A. Sponseller, D. Butman, J. Klaminder, H. Laudon, M. Rosvall and J. Karlsson. 2015. Sources of and processes controlling $CO_2$ emissions change with the size of streams and rivers. Nature Geoscience 8: 696-699. https://doi.org/10.1038/ngeo2507
  27. Houghton, R.A. 2014. The contemporary carbon cycle, In: Treatise on Geochemistry 2nd ed. (Holland, H.D. and K.K. Turekian, eds.). Elsevier, San Diego.
  28. Huang, T.H., Y.H. Fu, P.Y. Pan and C.T.A. Chen. 2012. Fluvial carbon fluxes in tropical rivers. Current Opinion in Environmental Sustainability 4: 162-169. https://doi.org/10.1016/j.cosust.2012.02.004
  29. Hur, J., N. Hang Vo-Minh and B.-M. Lee. 2014. Influence of upstream land use on dissolved organic matter and trihalomethane formation potential in watersheds for two different seasons. Environmental Science and Pollution Research 21: 7489-7500. https://doi.org/10.1007/s11356-014-2667-4
  30. Jeong, J.J., S. Bartsch, J.H. Fleckenstein, E. Matzner, J.D. Tenhunen, S.D. Lee, S.K. Park and J.H. Park. 2012. Differential storm responses of dissolved and particulate organic carbon in a mountainous headwater stream, investigated by high-frequency, in situ optical measurements. Journal of Geophysical Research-Biogeosciences 117.
  31. Jobbagy, E.G. and R.B. Jackson. 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications 10: 423-436. https://doi.org/10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
  32. Jung, B.J., H.J. Lee, J.J. Jeong, J. Owen, B. Kim, K. Meusburger, C. Alewell, G. Gebauer, C. Shope and J.H. Park. 2012. Storm pulses and varying sources of hydrologic carbon export from a mountainous watershed. Journal of Hydrology 440: 90-101.
  33. Jung, B.J., J.K. Lee, H. Kim and J.H. Park. 2014. Export, biodegradation, and disinfection byproduct formation of dissolved and particulate organic carbon in a forested headwater stream during extreme rainfall events. Biogeosciences 11: 6119-6129.
  34. Kim, J.-K., S. Jung, J.-S. Eom, C. Jang, Y. Lee, J.S. Owen, M.-S. Jung and B. Kim. 2013. Dissolved and particulate organic carbon concentrations in stream water and relationships with land use in multiple-use watersheds of the Han River (Korea). Water International 38: 326-339. https://doi.org/10.1080/02508060.2013.769411
  35. Kim, K.-H. and E.-S. Shim. 2001. Geochemical characteristics and origin of dissolved ions in the Han River water. Economic and Environmental Geology 34: 539-553.
  36. Kim, M.-S., J.-M. Kim, J.-Y. Hwang, B.-K. Kim, H.-S. Cho, S.J. Youn, S.-y. Hong, O.-S. Kwon and W.-S. Lee. 2014. De termination of the origin of particulate organic matter at the Lake Paldang using stable isotope ratios (${\delta}^{13}C$, ${\delta}^{15}N$). Korean Journal of Ecology and Environment 47: 127-134. https://doi.org/10.11614/KSL.2014.47.2.127
  37. Kim, S.J., J. Kim and K. Kim. 2010. Organic carbon efflux from a deciduous forest catchment in Korea. Biogeosciences 7: 1323-1334. https://doi.org/10.5194/bg-7-1323-2010
  38. Kokic, J., M.B. Wallin, H.E. Chmiel, B.A. Denfeld and S. Sobek. 2015. Carbon dioxide evasion from headwater systems strongly contributes to the total export of carbon from a small boreal lake catchment. Journal of Geophysical Research-Biogeosciences 120: 13-28. https://doi.org/10.1002/2014JG002706
  39. Lauerwald, R., G.G. Laruelle, J. Hartmann, P. Ciais and P.A.G. Regnier. 2015. Spatial patterns in $CO_2$ evasion from the global river network. Global Biogeochemical Cycles 29: 534-554. https://doi.org/10.1002/2014GB004941
  40. Lee, E.J., G.Y. Yoo, Y. Jeong, K.U. Kim, J.H. Park and N.H. Oh. 2015. Comparison of UV-VIS and FDOM sensors for in situ monitoring of stream DOC concentrations. Biogeosciences 12: 3109-3118. https://doi.org/10.5194/bg-12-3109-2015
  41. Lee, K.S., J.S. Ryu, K.H. Ahn, H.W. Chang and D. Lee. 2007. Factors controlling carbon isotope ratios of dissolved inorganic carbon in two major tributaries of the Han River, Korea. Hydrological Processes 21: 500-509. https://doi.org/10.1002/hyp.6254
  42. Lee, Y.-J., B.-K. Jeong, Y.-S. Shin, S.-H. Kim, and K.-H. Shin. 2013. Determination of the origin of particulate organic matter at the estuary of Youngsan River using stable isotope ratios (${\delta}^{13}C$, ${\delta}^{15}N$). Korean Journal of Ecology and Environment 46: 175-184.
  43. Likens, G.E. 2010. The role of science in decision making: does evidence-based science drive environmental policy? Frontiers in Ecology and the Environment 8: E1-E9. https://doi.org/10.1890/090132
  44. Likens, G.E., C.T. Driscoll and D.C. Buso. 1996. Long-term effects of acid rain: Response and recovery of a forest ecosystem. Science 272: 244-246. https://doi.org/10.1126/science.272.5259.244
  45. Ludwig, W., J.L. Probst and S. Kempe. 1996. Predicting the oceanic input of organic carbon by continental erosion. Global Biogeochemical Cycles 10: 23-41. https://doi.org/10.1029/95GB02925
  46. Mayorga, E., A.K. Aufdenkampe, C.A. Masiello, A.V. Krusche, J.I. Hedges, P.D. Quay, J.E. Richey and T.A. Brown. 2005. Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers. Nature 436: 538-541. https://doi.org/10.1038/nature03880
  47. Meybeck, M. 1987. Global chemical-weathering of surficial rocks estimated from river dissolved loads. American Journal of Science 287: 401-428. https://doi.org/10.2475/ajs.287.5.401
  48. Meybeck, M. 2004. Global occurrence of major elements in rivers, In: Treatise on Geochemistry (Holland, H.D. and K.K. Turekian, eds.). Elsevier, San Diego.
  49. Oh, N.H. 2014. The effects of elevated atmospheric $CO_2$ on chemical weathering of forest soils. Korean Journal of Agricultural and Forest Meteorology 16: 169-180. https://doi.org/10.5532/KJAFM.2014.16.3.169
  50. Oh, N.H., M. Hofmockel, M.L. Lavine and D.D. Richter. 2007. Did elevated atmospheric $CO_2$ alter soil mineral weathering? an analysis of 5-year soil water chemistry data at Duke FACE study. Global Change Biology 13: 2626-2641. https://doi.org/10.1111/j.1365-2486.2007.01452.x
  51. Oh, N.H., B.A. Pellerin, P.A.M. Bachand, P.J. Hernes, S.M. Bachand, N. Ohara, M.L. Kavvas, B.A. Bergamaschi and W.R. Horwath. 2013. The role of irrigation runoff and winter rainfall on dissolved organic carbon loads in an agricultural watershed. Agriculture Ecosystems & Environment 179: 1-10. https://doi.org/10.1016/j.agee.2013.07.004
  52. Oh, N.H. and D.D. Richter. 2004. Soil acidification induced by elevated atmospheric $CO_2$. Global Change Biology 10: 1936-1946. https://doi.org/10.1111/j.1365-2486.2004.00864.x
  53. Raymond, P.A. and J.E. Bauer. 2001. Use of $^{14}C$ and $^{13}C$ natural abundances for evaluating riverine, estuarine, and coastal DOC and POC sources and cycling: a review and synthesis. Organic Geochemistry 32: 469-485. https://doi.org/10.1016/S0146-6380(00)00190-X
  54. Raymond, P.A., J. Hartmann, R. Lauerwald, S. Sobek, C. Mc-Donald, M. Hoover, D. Butman, R. Striegl, E. Mayorga, C. Humborg, P. Kortelainen, H. Duerr, M. Meybeck, P. Ciais and P. Guth. 2013. Global carbon dioxide emissions from inland waters. Nature 503: 355-359. https://doi.org/10.1038/nature12760
  55. Raymond, P.A., N.H. Oh, R.E. Turner, W. Broussard. 2008. Anthropogenically enhanced fluxes of water and carbon from the Mississippi River. Nature 451: 449-452. https://doi.org/10.1038/nature06505
  56. Regnier, P., P. Friedlingstein, P. Ciais, F.T. Mackenzie, N. Gruber, I.A. Janssens, G.G. Laruelle, R. Lauerwald, S. Luyssaert, A.J. Andersson, S. Arndt, C. Arnosti, A.V. Borges, A.W. Dale, A. Gallego-Sala, Y. Godderis, N. Goossens, J. Hartmann, C. Heinze, T. Ilyina, F. Joos, D.E. LaRowe, J. Leifeld, F.J.R. Meysman, G. Munhoven, P.A. Raymond, R. Spahni, P. Suntharalingam and M. Thullner. 2013. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nature Geoscience 6: 597-607. https://doi.org/10.1038/ngeo1830
  57. Richey, J.E. 2004. Pathways of atmospheric $CO_2$ through fluvial systems, pp. 329-340. In: The Global Carbon Cycle: Integrating Humans, Climate, and the Natural World (Field, C.B. and M.R. Raupach, eds.). Island Press, Washington, DC.
  58. Richey, J.E., J.T. Brock, R.J. Naiman, R.C. Wissmar and R.F. Stallard. 1980. Organic carbon: Oxidation and transport in the Amazon River. Science 207: 1348-1351. https://doi.org/10.1126/science.207.4437.1348
  59. Richey, J.E., J.M. Melack, A.K. Aufdenkampe, V.M. Ballester and L.L. Hess. 2002. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric $CO_2$. Nature 416: 617-620. https://doi.org/10.1038/416617a
  60. Richter, D.D., D. Markewitz, S.E. Trumbore and C.G. Wells. 1999. Rapid accumulation and turnover of soil carbon in a re-establishing forest. Nature 400: 56-58. https://doi.org/10.1038/21867
  61. Roth, J. 1879. Allgemeine und chemische Geologie Band 1: Bildung und Umbildung der Mineralien - Quell-, Fluss-, und Meerwasser. Verlag von Wilhelm Hertz. Berlin.
  62. Ryu, J.S., H.W. Chang and K.S. Lee. 2008. Hydrogeochemistry and isotope geochemistry of the Han River system, A summary. Journal of the Geological Society of Korea 44: 467-477.
  63. Schlesinger, W.H. 1990. Evidence from chronosequence studies for a low carbon storage potential of soils. Nature 348: 232-234. https://doi.org/10.1038/348232a0
  64. Schlesinger, W.H. and E.S. Bernhardt. 2013. Biogeochemistry: An Analysis of Global Change. Academic Press, San Diego, California.
  65. Schlesinger, W.H. and J.M. Melack. 1981. Transport of organic carbon in the world's rivers. Tellus 33: 172-187.
  66. Shin, W.J., G.S. Chung, D. Lee and K.S. Lee. 2011a. Dissolved inorganic carbon export from carbonate and silicate catchments estimated from carbonate chemistry and ${\delta}^{13}C_{DIC}$. Hydrology and Earth System Sciences 15: 2551-2560. https://doi.org/10.5194/hess-15-2551-2011
  67. Shin, W.J., K.S. Lee, Y. Park, D. Lee and E.J. Yu. 2015. Tracing anthropogenic DIC in urban streams based on isotopic and geochemical tracers. Environmental Earth Sciences 74: 2707-2717. https://doi.org/10.1007/s12665-015-4292-z
  68. Shin, W.J., J.S. Ryu, Y. Park and K.S. Lee. 2011b. Chemical weathering and associated $CO_2$ consumption in six major river basins, South Korea. Geomorphology 129: 334-341. https://doi.org/10.1016/j.geomorph.2011.02.028
  69. Shin, Y., E.J. Lee, Y.J. Jeon, J. Hur and N.H. Oh. 2016. Hydrological changes of DOM composition and biodegradability of rivers in temperate monsoon climates. Journal of Hydrology 540: 538-548. https://doi.org/10.1016/j.jhydrol.2016.06.004
  70. Singer, G.A., C. Fasching, L. Wilhelm, J. Niggemann, P. Steier, T. Dittmar and T.J. Battin. 2012. Biogeochemically diverse organic matter in Alpine glaciers and its downstream fate. Nature Geoscience 5: 710-714. https://doi.org/10.1038/ngeo1581
  71. Stubbins, A., J.F. Lapierre, M. Berggren, Y.T. Prairie, T. Dittmar and P.A. del Giorgio. 2014. What's in an EEM? Molecular Signatures Associated with Dissolved Organic Fluorescence in Boreal Canada. Environmental Science & Technology 48: 10598-10606. https://doi.org/10.1021/es502086e
  72. Stumm, W. and J.J. Morgan. 1996. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. Wiley, New York.
  73. Tarnocai, C., J.G. Canadell, E.A.G. Schuur, P. Kuhry, G. Mazhitova and S. Zimov. 2009. Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical Cycles 23.
  74. Tranvik, L.J., J.A. Downing, J.B. Cotner, S.A. Loiselle, R.G. Striegl, T.J. Ballatore, P. Dillon, K. Finlay, K. Fortino, L.B. Knoll, P.L. Kortelainen, T. Kutser, S. Larsen, I. Laurion, D.M. Leech, S.L. McCallister, D.M. McKnight, J.M. Melack, E. Overholt, J.A. Porter, Y. Prairie, W.H. Renwick, F. Roland, B.S. Sherman, D.W. Schindler, S. Sobek, A. Tremblay, M.J. Vanni, A.M. Verschoor, E. von Wachenfeldt and G.A. Weyhenmeyer. 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography 54: 2298-2314. https://doi.org/10.4319/lo.2009.54.6_part_2.2298
  75. Wallin, M.B., T. Grabs, I. Buffam, H. Laudon, A. Agren, M.G. Oquist and K. Bishop. 2013. Evasion of $CO_2$ from streams -The dominant component of the carbon export through the aquatic conduit in a boreal landscape. Global Change Biology 19: 785-797. https://doi.org/10.1111/gcb.12083
  76. Xie, Y.F. 2004. Disinfection Byproducts in Drinking Water: Formation, Analysis, and Control. Lewis Pulbishers, Boca Raton, FL.
  77. Yoo, S., D.A. Kwak, G. Cui, W.K. Lee, H. Kwak, A. Ito, Y. Son and S. Jeon. 2013. Estimation of the ecosystem carbon budget in South Korea between 1999 and 2008. Ecological Research 28: 1045-1059. https://doi.org/10.1007/s11284-013-1085-2
  78. Yoon, T.K., H. Jin, N.H. Oh and J.H. Park. 2016. Technical note: Assessing gas equilibration systems for continuous p$CO_2$ measurements in inland waters. Biogeosciences 13: 3915-3930. https://doi.org/10.5194/bg-13-3915-2016
  79. Yu, J.-Y., I.-K. Choi and H.-S. Kim. 1994. Geochemical characteristics of the surface water depending on the bed rock types in the Chuncheon area. Journal of Geological Society of Korea 30: 307-324.
  80. Zhao, M.S. and S.W. Running. 2010. Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 Through 2009. Science 329: 940-943. https://doi.org/10.1126/science.1192666