Acknowledgement
Supported by : 한국에너지기술평가원(KETEP)
References
- Kim, M. K., & Shin, D. H. (2012), A Study on Improvements of Policy System on School Building Retrofits for Energy Efficiency, Seoul urban research 13(3), 159-173
- Kim, Y. K., & Lee, T. W. (2012), An Analysis of the Energy Saving Effect Through the Retrofit and the Optimal Operation for HVAC Systems, Korean Journal of Air-Conditioning and Refrigeration Engineering, 24(4), 343-350 https://doi.org/10.6110/KJACR.2012.24.4.343
- Park, G. H., Kim, J. K., & Park, J. W. (2014), National and public school buildings Retrofit Study, Korea Energy Economics Institute, Basic research report 14-15
- Kim, K. H., & Haberl, J. S. (2015). Development of methodology for calibrated simulation in single-family residential buildings using three-parameter change-point regression model. Energy and Buildings, 99, 140-152. https://doi.org/10.1016/j.enbuild.2015.04.032
- Tardioli, G., Kerrigan, R., Oates, M., James, O. D., & Finn, D. (2015). Data Driven Approaches for Prediction of Building Energy Consumption at Urban Level, Energy Procedia, 78, 3378-3383. https://doi.org/10.1016/j.egypro.2015.11.754
- Kusiak, A., Li, M., & Zhang, Z. (2010). A data-driven approach for steam load prediction in buildings, Applied Energy, 87(3), 925-933. https://doi.org/10.1016/j.apenergy.2009.09.004
- Park, H. C., & Chung, M. (2009). Comparison of energy demand characteristics for hotel, hospital, and office buildings in korea, Korean Journal of Air-Conditioning and Refrigeration Engineering, 21(10), 553-558.
- Jung, K. T., Yoon, S. M., Moon, H. J., & Yeo, W. H. (2012). A Study on Building Energy Consumption Pattern Analysis Using Data Mining, KIEAE Journal, 12(2), 77-82.
- Park, K. H., & Kim, S. M. (2011). Analysis of energy consumption of buildings in the university, Korean Journal of Air-Conditioning and Refrigeration Engineering, 23(9), 633-638. https://doi.org/10.6110/KJACR.2011.23.9.633
- Cho, S. H. (2003). Effect of Measuring Period on Predicting the Annual Heating Energy Consumption for Building, Korean Journal of Air Conditioning and Refrigeration Engineering, 15(4), 287-294
- Jeong, S. H., Kim, H. Y., Lee, H. N., & Leigh, S. B. (2015). A Validation Study of Remote Energy Diagnosis Algorithm Performance through Actual Building Energy Data Analysis, Journal of the architectural institute of Korea planning & design, 31(5), 137-145. https://doi.org/10.5659/JAIK_PD.2015.31.5.137
- Abrahart, R. J., See, L. M., & Solomatine, D. P. (Eds.). (2008). Practical hydroinformatics: computational intelligence and technological developments in water applications, Springer Science & Business Media, 68, 17
- Mathieu, J. L., Price, P. N., Kiliccote, S., & Piette, M. A. (2011). Quantifying changes in building electricity use, with application to demand response, Smart Grid, IEEE Transactions on, 2(3), 507-518. https://doi.org/10.1109/TSG.2011.2145010
- Ali, M. T., Mokhtar, M., Chiesa, M., & Armstrong, P. (2011). A cooling change-point model of community-aggregate electrical load, Energy and Buildings, 43(1), 28-37. https://doi.org/10.1016/j.enbuild.2010.07.025