DOI QR코드

DOI QR Code

Selection of Poplar Clones for Short Rotation Coppice in a Riparian Area

수변지 단벌기 목재에너지림에 적합한 포플러 클론 선발

  • Kim, Hyun-Chul (Division of Tree Breeding, National Institute of Forest Science Institute) ;
  • Lee, Sol-Ji (Division of Tree Breeding, National Institute of Forest Science Institute) ;
  • Lee, Wi-Young (Division of Tree Breeding, National Institute of Forest Science Institute) ;
  • Kang, Jun-Won (Division of Tree Breeding, National Institute of Forest Science Institute)
  • 김현철 (국립산림과학원 임목육종과) ;
  • 이솔지 (국립산림과학원 임목육종과) ;
  • 이위영 (국립산림과학원 임목육종과) ;
  • 강준원 (국립산림과학원 임목육종과)
  • Received : 2016.02.23
  • Accepted : 2016.03.08
  • Published : 2016.03.31

Abstract

This study aims to select the most appropriate poplar clones for planting on short rotation coppice poplar plantations in a riparian area. The research investigated biomass production, nitrogen and carbon absorption with 2-year-old poplar (Populus spp.) clones including P. euramericana clone Eco28, P. deltoides hybrid clone 97-18, and P. alba ${\times}$ P. glandulosa hybrid clone 72-30. The average number of stems per stump was five and P. euramericana clone Eco28 had the greatest average number of live stems per stump with 5.9. The average stem diameter was 23.2 mm, and P. deltoides hybrid clone 97-18 achieved the largest average diameter with 25.4 mm. The average annual above-ground biomass production of Populus deltoides hybrid clone 97-18 was 16.1 ton/ha/year, followed by P. alba ${\times}$ P. glandulosa hybrid clone 72-30 and P. euramericana clone Eco28, 12.3 and 5.4 ton/ha/year, respectively. The average annual nitrogen uptake of poplar clones was 46.5 kg/ha/year. P. alba ${\times}$ P. glandulosa hybrid clone 72-30 had the highest average, 63.1 kg/ha/year. The average of annual carbon absorption was estimated 5.3 ton/ha/year and Populus deltoides hybrid clone 97-18 showed the best results with 7.7 ton/ha/year. Based on the results given above, P. deltoides hybrid aspen clone 97-18 is considered as the most suitable poplar clones for wood biomass production on riparian areas.

연구는 수변지에 포플러 단벌기 목재에너지림을 조성한 후 2년생 포플러 클론들의 바이오매스 생산, 질소 및 탄소흡수량을 구명하여 수변지 단벌기 목재에너지림에 적합한 포플러 클론을 선발하는데 그 목적이 있으며, 공시수종은 이태리포플러 Eco28클론, 미류나무 교잡종 97-18클론 및 현사시나무 72-30클론 등의 포플러 3클론이다. 포플러 클론들의 평균 줄기 수는 5.0개로 나타났으며, 이태리포플러 Eco28클론이 5.9개로 가장 많았다. 포플러 클론들의 평균 줄기직경 생장은 23.2 mm로 나타났으며, 미류나무 교잡종 97-18클론이 25.4 mm로 가장 우수하게 나타났다. 포플러 클론별 연평균 바이오매스 생산량은 미류나무 교잡종 97-18클론이 16.1 ton/ha/year, 현사시나무 72-30클론이 12.3 ton/ha/year 그리고 이태리포플러 Eco28클론이 5.4 ton/ha/year로 나타나 미류나무 교잡종 97-18클론이 가장 우수하였다. 포플러 클론들의 평균 질소흡수량은 연간 46.5 kg/ha/year로 나타났으며, 현사시나무 72-30클론이 연간 63.1 kg/ha/year로 가장 높게 나타났다. 평균 탄소흡수량은 연간 5.3 ton/ha/year로 나타났으며, 미류나무 교잡종 97-18클론이 연간 7.7 ton/ha로 가장 높게 나타났다. 이와 같은 결과들을 고려할 때 미류나무 교잡종 97-18클론이 수변지 포플러 목재에너지림에 가장 적합한 포플러 클론이라 판단된다.

Keywords

References

  1. Cartisano, R., Mattioli, W., Corona, P.G., Mugnozza, S., Sabatti, M., Ferrari, B., Cimini, D., and Giuliarelli, D. 2013. Assessing and mapping biomass potential productivity from poplar-dominated riparian forests: A case study. Biomass and Bioenergy 54: 293-302. https://doi.org/10.1016/j.biombioe.2012.10.023
  2. Dillen, S.Y., Djomo, S.N., Al Afas, N., Vanbeveren, S., and Ceulemans, R. 2013. Biomass yield and energy balance of a short rotation poplar coppice with multiple clones on degraded land during 16 years. Biomass and Bioenergy 56: 15-165.
  3. Fortier, J., Gagnon, D., Truax, B., and Lambert, F. 2010a. Biomass and volume yield after 6 years in muliclonal hybrid poplar riparian buffer strips. Biomass and Bioenergy 34: 1028-1040. https://doi.org/10.1016/j.biombioe.2010.02.011
  4. Fortier, J., Gagnon, D., Truax, B., and Lambert, F. 2010b. Nutrient accumulation and carbon sequestration in 6-yearold hybrid poplars in multiclonal agriculture riparian buffer strips. Agriculture, Ecosystems and Environment 137: 276-287. https://doi.org/10.1016/j.agee.2010.02.013
  5. Gray, K.A., Zhao, L., and Emptage, M. 2006. Bioethanol. Current Opinion in Chemical Biology 10(2): 141-146. https://doi.org/10.1016/j.cbpa.2006.02.035
  6. Hamelinck, C., Hooijdonk, G., and Faaij, A. 2005. Ethanol from lignocellulosic biomass technoeconomic performance in short-, middle- and long-term. Biomass and Bioenergy 28(4): 384-410. https://doi.org/10.1016/j.biombioe.2004.09.002
  7. Kelly, J., Kovar, J., Sokolowsky, R., and Moorman. T. 2007. Phosphorus uptake during four years by different vegetative cover types in a riparian buffer. Nutrient Cycling in Agroecosystems 34: 197-224.
  8. Kim, H.C., Lee, W.Y., Yeo, J.K., and Oh, C.Y. 2015. Aboveground biomass and adaptability of four-year-old poplar in a riparian area. Journal of Agriculture & Life Science 49(1): 95-102. https://doi.org/10.14397/jals.2015.49.1.95
  9. Kim, H.C., Shin H., Lee, H.H., Yeo, J.K., and Kang, K.S. 2014a. Biomass production in the short rotation coppice of poplar species treated with low-concentrated liquid fertilizer. Korea Journal of Breeding Science 46(1): 10-16. https://doi.org/10.9787/KJBS.2014.46.1.010
  10. Kim, Y.H., Jeon, E.J., Shin, M.Y., Chung, I.B., Lee, S.T., Seo, K.W., and Pho, J.K. 2014b. A study on the baseline carbon stock for major species in Korea for conducting carbon offset projects based on forest management. Journal of Korean Forest Society 103(3): 439-445. https://doi.org/10.14578/jkfs.2014.103.3.439
  11. Labrecque, M. and Teodorescu, T.I. 2003. High biomass yield achieved by Salix clones in SRIC following two 3-year coppice rotations on abandoned farmland in southern Quebec, Canada. Biomass and Bioenergy 25: 135-146. https://doi.org/10.1016/S0961-9534(02)00192-7
  12. Laureysens, I., Pellis, A., Willems, J., and Ceulemans, R. 2005. Growth and production of a short rotation coppice culture of poplar. III. Second rotation results. Biomass and Bioenergy 29: 10-21. https://doi.org/10.1016/j.biombioe.2005.02.005
  13. Laureysens, I., Deraedt, W., Indeherberge, T., and Ceulemans, R. 2003. Population dynamics in a 6-year old coppice culture of poplar..Clonal differences in stool mortality, Shoot dynamics and shoot diameter distribution in relation to biomass production. Biomass and Bioenergy 24: 81-95. https://doi.org/10.1016/S0961-9534(02)00105-8
  14. Pellis, A., Laureysens, I., and Ceulemans, R. 2004. Growth and production of a short rotation coppice culture of poplar. Clonal differences in leaf characteristics in relation to biomass production. Biomass and Bioenergy 27: 9-19. https://doi.org/10.1016/j.biombioe.2003.11.001
  15. Schultz, R.C., Colletti, J.P., Isenhart, T.M,. Simpkins, W.W., Mize, C., and Thompson, M. 1995. Design and placement of a multi-species riparian buffer strip system. Agroforestry System 29: 201-206. https://doi.org/10.1007/BF00704869
  16. Schultz, R.C., Isenhart, T.M., Simpkins, W.W., and Colletti, J.P. 2004. Riparian forest buffers in agroecosystems-lessons learned from from the Bear Creek Watershed, central Iowa, USA. Agroforestry System 61: 35-50.
  17. Son, Y.M., Lee, S.J., Kim, S., Hwang J.S., Kim, R., and Park, H. 2014. Mapping and assessment of forest biomass resources in Korea. Journal of Korean Forest Society 103(3): 431-438. https://doi.org/10.14578/jkfs.2014.103.3.431
  18. Yeo, J.K., Lee, W.W., Koo, Y.B., Woo, K.S., and Byun, J.K. 2010. Nitrogen storage potential in aboveground biomass of three-year-old poplar clones in a riparian area. Journal of Agriculture & Life Science 44(3): 15-21.

Cited by

  1. 새만금간척지에 식재한 포플러 클론의 생리적 특성 vol.106, pp.2, 2017, https://doi.org/10.14578/jkfs.2017.106.2.186
  2. Selection of Poplar Clones for Short Rotation Coppice in a Reclaimed Land vol.52, pp.2, 2018, https://doi.org/10.14397/jals.2018.52.2.21
  3. Evaluation of Bioenergy Potential and Relative Impact of Microclimate Conditions for Sustainable Fuel Pellets Production and Carbon Sequestration of Short-Rotation Forestry (Populus × Canadensis vol.12, pp.15, 2016, https://doi.org/10.3390/su12156244