DOI QR코드

DOI QR Code

Influences of Termite Activities on Ecosystem Carbon Cycle: Focusing on Coarse Woody Debris Decomposition

흰개미가 생태계 탄소 순환에 미치는 영향: 고사목 분해를 중심으로

  • Kim, Seongjun (Department of Environmental Science and Ecological Engineering, Korea University) ;
  • Lee, Jongyeol (Department of Environmental Science and Ecological Engineering, Korea University) ;
  • Han, Seung Hyun (Department of Environmental Science and Ecological Engineering, Korea University) ;
  • Chang, Hanna (Department of Environmental Science and Ecological Engineering, Korea University) ;
  • Lee, Sohye (Department of Environmental Science and Ecological Engineering, Korea University) ;
  • Yun, Hyeon Min (Department of Environmental Science and Ecological Engineering, Korea University) ;
  • Son, Yowhan (Department of Environmental Science and Ecological Engineering, Korea University)
  • 김성준 (고려대학교 환경생태공학과) ;
  • 이종열 (고려대학교 환경생태공학과) ;
  • 한승현 (고려대학교 환경생태공학과) ;
  • 장한나 (고려대학교 환경생태공학과) ;
  • 이소혜 (고려대학교 환경생태공학과) ;
  • 윤현민 (고려대학교 환경생태공학과) ;
  • 손요환 (고려대학교 환경생태공학과)
  • Received : 2015.09.01
  • Accepted : 2015.11.23
  • Published : 2016.03.31

Abstract

Globally, there are more than 2600 species of termites which adapted plenty of terrestrial ecosystems by various strategies such as making termite nest and society. Various studies were recently carried out on termites because they play significant roles in the context of carbon (C) cycle of terrestrial ecosystems. According to the results of previous studies, termite activities influenced the amount of soil organic C, methane emission, and organic matter decomposition. Termite nests, where termite biomass was concentrated, exhibited 1.8 times higher soil organic C concentration than reference soils, and emitted $0.0-6.0kg\;ha^{-1}year^{-1}$ of methane in tropical forests and savannas. Feeding activity of termites, in addition, accelerated coarse woody debris (CWD) decomposition by increasing the surface area to volume ratio of CWD. Especially, CWD decomposition induced by the Rhinotermitidae family appeared to be significant for the C cycle in temperate forests. However, more studies should be conducted on termite-induced CWD decomposition in temperate forests because few studies have dealt with it. The termite-induced CWD decomposition could be measured by preparing disc-shaped CWD samples, excluding access of termites to the CWD samples, and comparing the decomposition rate of the CWD samples with and without the termite exclusion treatment. Studies on the termite-induced CWD decomposition would contribute to further elucidation of the C cycle in temperate forests.

흰개미는 전세계적으로 2600여종 이상이 보고되었으며, 집을 형성하고 군체를 이루는 등 각종 생존 전략을 바탕으로 다양한 생태계에서 살아가고 있다. 그런데 근래 흰개미 활동이 육상 생태계의 탄소 순환에 중요한 역할을 하는 것으로 알려지면서 이에 대한 연구가 진행되고 있다. 관련 연구 결과를 분석한 결과, 흰개미의 활동은 토양 유기탄소 농도 변화, 메탄 발생 및 유기물 분해 등을 조절하여 탄소 순환에 영향을 미치는 것으로 나타났다. 흰개미집은 흰개미 생물량이 집중된 지점으로 일반 토양에 비하여 평균 1.8배 많은 유기탄소를 함유하며, 열대 산림 및 사바나 지역에서 연간 $0.0-6.0kg\;ha^{-1}$의 메탄을 방출하는 메탄의 점 발생원이었다. 또한 흰개미의 섭식 활동은 고사목의 부피 대비 표면적의 비율을 증가시켜 고사목 분해를 가속화하였다. 이 중에서도 Rhinotermitidae과 흰개미에 의한 고사목 분해는 온대 산림의 탄소 순환에서 중요한 것으로 보고되고 있다. 그러나 이에 대한 연구는 극히 부족한 실정이므로 온대 산림에서의 흰개미에 의한 고사목 분해 연구가 필요하다. 흰개미에 의한 고사목 분해는 고사목을 결의 수직 방향으로 잘라 만든 단판 시료에 흰개미의 접근을 차단한 후 분해되도록 하고, 처리하지 않은 시료의 분해율과 비교함으로써 연구할 수 있다. 흰개미에 의한 고사목 분해 연구를 통하여 육상 생태계 중 특히 온대 산림에서의 탄소 순환을 보다 명확히 이해할 수 있을 것으로 기대된다.

Keywords

References

  1. Abe, S.S., and Wakatsuki, T. 2010. Possible influence of termites (Macrotermes bellicosus) on forms and composition of free sesquioxides in tropical soils. Pedobiologia 53: 301-306. https://doi.org/10.1016/j.pedobi.2010.02.002
  2. Abe, S.S., Watanabe, Y., Onishi, T., Kotegawa, T., and Wakatsuki, T. 2011. Nutrient storage in termite (Macrotermes bellicosus) mounds and the implications for nutrient dynamics in a tropical savanna Ultisol. Soil Science and Plant Nutrition 57: 786-795. https://doi.org/10.1080/00380768.2011.640922
  3. Abe, T. 1980. Studies on the distribution and ecological role of termites in a lowland rain forest of West Malaysia. 4. the role of termites in the process of wood decomposition in the Pasoh Forest Reserve. Revue d'Ecologie et de Biologie du Sol 17: 23-40.
  4. Ackerman, I.L., Teixeira, W.G., Riha, S.J., Lehmann, J., and Fernandes, E.C.M. 2007. The impact of mound-building termites on surface soil properties in a secondary forest of central Amazonia. Applied Soil Ecology 37: 267-276. https://doi.org/10.1016/j.apsoil.2007.08.005
  5. Arshad, M.A. 1982. Influence of the termite Macrotermes michaelseni (SJÖST) on soil fertility and vegetation in a semi-arid savannah ecosystem. Agro-Ecosystems 8: 47-58. https://doi.org/10.1016/0304-3746(82)90014-2
  6. Asawalam, D.O., and Johnson, S. 2007. Physical and chemical characteristics of soils modified by earthworms and termites. Communications in Soil Science and Plant Analysis 38: 513-521. https://doi.org/10.1080/00103620601174569
  7. Asawalam, D.O., Osodeke, V.E., Kamalu, O.J., and Ugwa, I.K. 1999. Effects of termites on the physical and chemical properties of the acid sandy soils of southern Nigeria. Communications in Soil Science and Plant Analysis 30: 1691-1696. https://doi.org/10.1080/00103629909370321
  8. Bagine, R.K.N. 1984. Soil translocation by termites of the genus Odontotermes (Holmgren) (Isoptera: Macrotermitinae) in an arid area of northern Kenya. Oecologia 64: 263-266. https://doi.org/10.1007/BF00376880
  9. Bradford, M.A., Warren, R.J., Baldrian, P., Crowther, T.W., Maynard, D.S., Oldfield, E.E., Wieder, W.R., Wood, S.A., and King, J.R. 2014. Climate fails to predict wood decomposition at regional scales. Nature Climate Change 4: 625-630. https://doi.org/10.1038/nclimate2251
  10. Brune, A. 2010. Methanogens in the digestive tract of termites. In: Microbiology Monographs (ed) Hackstein, J.H.P. Springer, Berlin. pp. 81-100.
  11. BrUmmer, C., Papen, H., Wassmann, R., and BrUggemann, N. 2009. Fluxes of $CH_4\;and\;CO_2$ from soil and termite mounds in south Sudanian savanna of Burkina Faso (West Africa). Global Biogeochemical Cycles 23: 13.
  12. Buxton, R.D. 1981. Changes in the composition and activities of termites communities in relation to changing rainfall. Oecologia 51: 371-378. https://doi.org/10.1007/BF00540908
  13. Collins, N.M. 1981. The role of termites in the decomposition of wood and leaf litter in the southern Guinea savanna of Nigeria. Oecologia 51: 389-399. https://doi.org/10.1007/BF00540911
  14. Donovan, S.E., Eggleton, P., Dubbin, W.E., Batchelder, M., and Dibog, L. 2001. The effect of a soil-feeding termite, Cubitermes fungifaber (Isoptera: Termitidae) on soil properties: termites may be an important source of soil microhabitat heterogeneity in tropical forests. Pedobiologia 45: 1-11. https://doi.org/10.1078/0031-4056-00063
  15. Eggleton, P. 2011. An introduction to termites: biology, taxonomy and functional morphology. In: Biology of termites: a modern synthesis (eds) Bignell, D.E., Roisin, Y., and Lo, N. Springer, Dorderecht. pp. 1-26.
  16. Ekundayo, E.O., and Aghatise, V.O. 1996. Soil properties of termite mounds under different land use types in a typical Paleudult of midwestern Nigeria. Environmental Monitoring and Assessment 45: 1-7.
  17. Ekundayo, E.O., and Orhue, E.R. 2011. Physical and chemical properties of termite mounds and surrounding soil as influenced by land use in the Niger Delta region of Nigeria. Nigerian Journal of Soil and Environmental Research 9: 53-58.
  18. Engel, M.S., Grimaldi, D.A., and Krishna, K. 2009. Termites (Isoptera): their phylogeny, classification, and rise to ecological dominance. American Museum Novitates 3650: 1-27. https://doi.org/10.1206/651.1
  19. Garba, M., Cornelis, W.M., and Steppe, K. 2011. Effect of termite mound material on the physical properties of sandy soil and on the growth characteristics of tomato (Solanum lycopersicum L.) in semi-arid Niger. Plant and Soil 338: 451-466. https://doi.org/10.1007/s11104-010-0558-0
  20. Garnier-Sillam, E., and Harry, M. 1995. Distribution of humic compounds in mounds of some soil-feeding termite species of tropical rainforests: its influence on soil structure stability. Insectes Sociaux 42: 167-185. https://doi.org/10.1007/BF01242453
  21. Genet, J.A., Genet, K.S., Burton, T.M., Murphy, P.G., and Lugo A.E. 2001. Response of termite community and wood decomposition rates to habitat fragmentation in a subtropical dry forest. Tropical Ecology 42: 35-49.
  22. Gentry, J.B., and Whitford, W.G. 1982. The relationship between wood litter infall and relative abundance and feeding activity of subterranean termites Reticulitermes spp. in three southeastern coastal plain habitats. Oecologia 54: 63-67. https://doi.org/10.1007/BF00541109
  23. Gosling, C.M., Cromsigt, J.P.G.M., Mpanza, N., and Olff, H. 2012. Effects of erosion from mounds of different termite genera on distinct functional grassland types in an African savannah. Ecosystems 15: 128-139. https://doi.org/10.1007/s10021-011-9497-8
  24. Han, S.H., Lee, K.S., and Cung, Y.J. 1998. Characteristic of termite inhabits in South Korea and the control. Conservation Studies 19: 145-172. (In Korean with English abstract)
  25. Haverty, M.I., and Nutting, W.L. 1975. A simulation of wood consumption by the subterranean termite, Heterotermes aureus (Snyder), in an Arizona desert grassland. Insectes Sociaux 22: 92-102.
  26. Hesse, P.R. 1955. A chemical and physical study of the soils of termite mounds in East Africa. Journal of Ecology 43: 449-461. https://doi.org/10.2307/2257006
  27. Holt, J.A., and Lepage, M. 2000. Termites and soil properties. In: Termites: evolution, sociality, symbioses, ecology (eds) Abe, T., Bignell, D.E., and Higashi, M. Kluwer Academic Publishers, Dordrecht. pp. 389-407.
  28. Hopkins, B. 1966. Vegetation of the Olokemeji Forest Reserve, Nigeria: IV. The litter and soil with special reference to their seasonal changes. Journal of Ecology 54: 687-703. https://doi.org/10.2307/2257811
  29. Itakura, S., Okuda, J., Utagawa, K., Tanaka, H., and Enoki, A. 2006. Nutritional value of two subterranean termite species, Cuptotermes formosanus Shiraki and Retuculutermes speratues (Kolbe) (Isoptera: Rhinotermitidae). Japanese Journal of Environmental Entomology and Zoology 17: 107-115.
  30. Jamali, H., Livesley, S.J., and Hutley, L.B., Fest, B., Arndt, S.K. 2013. The relationships between termite mound $CH_4/CO_2$ emissions and internal concentration ratios are species specific. Biogeosciences 10: 2229-2240. https://doi.org/10.5194/bg-10-2229-2013
  31. Jamali, H., Livesley, S.J., Grover, S.P., Dawes, T.Z., Hutley, L.B., Cook, G.D., and Arndt, S.K. 2011. The importance of termites to the $CH_4$ balance of a tropical savanna woodland of northern Australia. Ecosystems 14: 698-709. https://doi.org/10.1007/s10021-011-9439-5
  32. Jeeva, D., Bignell, D.E., Eggleton, P., and Maryati, M. 1999. Respiratory gas exchanges of termites from the Sabah (Borneo) assemblage. Physiological Entomology 24: 11-17. https://doi.org/10.1046/j.1365-3032.1999.00106.x
  33. Jimenez, J.J., Decaens, T., and Lavelle, P. 2008. C and N concentrations in biogenic structures of a soil-feeding termite and a fungus-growing ant in the Colombian savannas. Applied Soil Ecology 40: 120-128. https://doi.org/10.1016/j.apsoil.2008.03.009
  34. Jones, D.T., and Eggleton, P. 2011. Global biogeography of termites: a compilation of sources. In: Biology of termites: a modern synthesis (eds) Bignell, D.E., Roisin, Y., and Lo, N. Springer, Dorderecht. pp. 477-498.
  35. Jouquet, P., Ranjard, L., Lepage, M., and Lata, J.C. 2005. Incidnece of fungus-growing termites (Isoptera, Macrotermitinae) on the structure of soil microbial communities. Soil Biology and Biochemistry 37: 1852-1859. https://doi.org/10.1016/j.soilbio.2005.02.017
  36. Jouquet, P., Tessier, D., and Lepage, M. 2004. The soil structural stability of termite nests: role of clays in Macrotermes bellicosus (Isoptera, Macrotermitinae) mound soils. European Journal of Soil Biology 40: 23-29. https://doi.org/10.1016/j.ejsobi.2004.01.006
  37. Jouquet, P., Traore, S., Coosai, C., Hartmann, C., and Bignell, D. 2011. Influence of termites on ecosystem functioning. ecosystem services provided by termites. European Journal of Soil Biology 47: 215-222. https://doi.org/10.1016/j.ejsobi.2011.05.005
  38. Kampichler, C., and Bruckner, A. 2009. The role of microarthropods in terrestrial decomposition: a meta-analysis of 40 years of litterbag studies. Biological Reviews 84: 375-389. https://doi.org/10.1111/j.1469-185X.2009.00078.x
  39. Kang, B.T. 1978. Effect of some biological factors on soil variability in the tropics III. effect of Macrotermes mounds. Plant and Soil 50: 241-251. https://doi.org/10.1007/BF02107175
  40. Kaschuk, G., Santos, J.C.P., Almeida, J.A., Sinhorati, D.C., and Berton Jr. J.F., 2006. Termite activity in relation to natural grassland soil attributes. Scientia Agricola 63: 583-588. https://doi.org/10.1590/S0103-90162006000600013
  41. Kitade, O. 2007. Characteristics and host-symbiont relationships of termite gut flagellates. Japanese Journal of Protozoology 40: 101-112. (In Japanese)
  42. Korb, J. 2011. Termite mound architecture, from function to construction. In: Biology of termites: a modern synthesis (eds) Bignell, D.E., Roisin, Y., and Lo, N. Springer, Dordrecht. pp. 349-374.
  43. Lee, J., Han, S.H., Kim, S., Chang, H., Yi, M.J., Park, G.S., Kim, C., Son, Y.M., Kim R., and Son, Y. 2015. Estimating the changes in forest carbon dynamics of Pinus densiflora and Quercus variabilis forests in South Korea under the RCP 8.5 climate change scenario. Korean Journal of Agricultural and Forest Meteorology 17: 35-44. (In Korean with English abstract) https://doi.org/10.5532/KJAFM.2015.17.1.35
  44. Lee, K.-S., and Jeong, S.-Y. 2004. Ecological characteristics of termite (Reticulitermes speratus kyushuensis) for preservation of wooden cultural heritage. Conservation Studies 37: 327-348. (In Korean with English abstract)
  45. Lee, K.E., and Butler, J.H.A. 1977. Termites, soil organic matter decomposition and nutrient cycling. Ecological Bulletines 25: 544-548.
  46. Lee, S.-H., and Chon, T.-S. 2011. Effects of climate change on subterranean termite territory size: a simulation study. Journal of Insect Science 11: 1-14.
  47. Lo, N., and Eggleton, P. 2011. Termite phylogenetics and cocladogenesis with symbionts. In: Biology of termites: a modern synthesis (eds) Bignell, D.E., Roisin, Y., and Lo, N. Springer, Dorderecht. pp. 27-50.
  48. Lu, M., Davidescu, M., Sukri, R.S., and Daskin, J.H. 2013. Termites facilitate root foraging by trees in a Bornean tropical forest. Journal of Tropical Ecology 29: 563-566. https://doi.org/10.1017/S0266467413000631
  49. Lopez-Hernandez, D. 2001. Nutrient dynamics (C, N and P) in termite mounds of Nasutitermes ephratae from savannas of the Orinoco Llanos (Venezuela). Soil Biology and Biochemistry 33: 747-753. https://doi.org/10.1016/S0038-0717(00)00220-0
  50. Macdonald, J.A., Jeeva, D., Eggleton, P., Davies, R., Bignell, D.E., Fowler, D., Lawton, J., and Maryati, M. 1999. The effect of termite biomass and anthropogenic disturbance on the $CH_4$ budget of tropical forests in Cameroon and Borneo. Global Change Biology 5: 869-879. https://doi.org/10.1046/j.1365-2486.1999.00279.x
  51. Maduakor, H.O., Okere, A.N., and Onyeanuforo, C.C. 1995. Termite mounds in relation to the surrounding soils in the forest and derived savanna zones of southeastern Nigeria. Biology and Fertility of Soils 20: 157-162. https://doi.org/10.1007/BF00336552
  52. Martius, C., Wassamann, R., Thein, U., Bandeira, A., Rennenberg, H., Junk, W., and Seiler, W. 1993. Methane emission from wood-feeding termites in Amazonia. Chemosphere 26: 623-632. https://doi.org/10.1016/0045-6535(93)90448-E
  53. Maynard, D.S., Crowther, T.W., King, J.R., Warren, R.J., and Bradford, M.A. 2015. Temperate forest termites: ecology, biogeography, and ecosystem impacts. Ecological Entomology 40: 199-210. https://doi.org/10.1111/een.12185
  54. Menichetti, L., Landi, L., Nannipieri, P., Katterer, T., Kirchmann, H., and Renella, G. 2014. Chemical properties and biochemical activity of colonized and abandoned litterfeeding termite (Macrotermes spp.) mounds in chromic Cambisol area on the Borana Plateau, Ethiopia. Pedosphere 24: 399-407. https://doi.org/10.1016/S1002-0160(14)60026-6
  55. Ndiaye, D., Lensi, R., Lepage, M., and Brauman, A. 2004. The effect of the soil-feeding termite Cubitermes niokoloensis on soil microbial activity in a semi-arid savanna in West Africa. Plant and Soil 259: 277-286. https://doi.org/10.1023/B:PLSO.0000020980.50095.e1
  56. Noh, N.J., Kim, C., Bae, S.W., Lee, W.K., Yoon, T.K., Muraoka, H., and Son, Y. 2013. Carbon and nitrogen dynamics in a Pinus densiflora forest with low and high stand densities. Journal of Plant Ecology 6: 368-379. https://doi.org/10.1093/jpe/rtt007
  57. Nunes, L., Bignell, D.E., Lo, N., and Eggleton, P. 1997. On the respiratory quotient (RQ) of termites (Insecta: Isoptera). Journal of Insect Physiology 43: 749-758. https://doi.org/10.1016/S0022-1910(97)00036-X
  58. Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L., Shvidenko, A., Lewis, S.L., Canadell, J.G., Ciais, P., Jackson, R.B., Pacala, S.W., McGuire, A.D., Piao, S., Rautiainen, A., Sitch, S., and Hayes, D. 2011. A large and persistent carbon sink in the world's forests. Science 333: 988-993. https://doi.org/10.1126/science.1201609
  59. Park, H.-C. 1998. Symbiotic relationship between termite, Reticulitermes speratus kyushuenesis Morimoto, and its intestinal microorganisms. Korean Journal of Soil Zoology 3: 19-24.
  60. Park, H.-C., and Bae, T.-W. 1997. Morphological description of Reticulitermes speratus kyushuenesis Morimoto (Isoptera: Rhinotermitidae) in southern part of Korea. Korean Journal of Soil Zoology 2: 59-64.
  61. Park, H.C., Majer, J.D., and Hobbs, R.J. 1994. Contribution of the western Australian wheatbelt termite, Drepanotermes tamminensis (Hill), to the soil nutrient budget. Ecological Research 9: 351-356. https://doi.org/10.1007/BF02348422
  62. Park, H.C., Majer, J.D., Hobbs, R.J., and Bae, T.U. 1993. Harvesting rate of the termite, Drepanotermes tamminensis (Hill) within native woodland and shrubland of the western Australian wheatbelt. Ecological Research 8: 269-275. https://doi.org/10.1007/BF02347186
  63. Park, M.-K., Son, H.-J., Kim, Y.-G., Lee, S.-M., Kim, K.-K., and Park, H.-C. 2010. Optimal condition to produce protease by strain separated from the intestine of Reticulitermes speratus. Journal of Life Science 20: 77-81. (In Korean with English abstract) https://doi.org/10.5352/JLS.2010.20.1.077
  64. Ra, J.-B., Kim, K.-B., and Leem, K.-H. 2012. Effect of heat treatment conditions on color change and termite resistance of heat-treated wood. Journal of Korean Wood Science and Technology 40: 370-377. (In Korean with English abstract) https://doi.org/10.5658/WOOD.2012.40.6.370
  65. Salick, J., Herrera, R., and Jordan, C.F. 1983. Termitaria: nutrient patchiness in nutrient-deficient rain forests. Biotropica 15: 1-7. https://doi.org/10.2307/2387990
  66. Sanderson, M.G. 1996. Biomass of termites and their emissions of methane and carbon dioxide: a global database. Global Biogeochemical Cycles 10: 543-557. https://doi.org/10.1029/96GB01893
  67. Sarcinelli, T.S., Ernesto, C., Schaefer, C.E.G.R., de Souza Lynch, L., Arato, H.D., Viana, J.H.M., de Albuquerque Filho, M.R., and Goncalves, T.T. 2009. Chemical, physical and micromorphological properties of termite mounds and adjacent soils along a toposequence in Zona da Mata, Minas Gerais State, Brazil. Catena 76: 107-113. https://doi.org/10.1016/j.catena.2008.10.001
  68. Sarcinelli, T.S., Schaefer, C.E.G.R., Filho, E.I.F., Mafia, R.G., and Neri, A.V. 2013. Soil modification by termites in a sandy-soil vegetation in the Brazilian Atlantic rain forest. Journal of Tropical Ecology 29: 439-448. https://doi.org/10.1017/S0266467413000497
  69. Schuurman, G. 2005. Decomposition rates and termite assemblage composition in semiarid Africa. Ecology 86: 1236-1249. https://doi.org/10.1890/03-0570
  70. Sileshi, G.W., Arshad, M.A., Konaté, S., and Nkunika, P.O.Y. 2010. Termite-induced heterogeneity in African savanna vegetation: mechanisms and patterns. Journal of Vegetation Science 21: 923-937. https://doi.org/10.1111/j.1654-1103.2010.01197.x
  71. Sugimoto, A., Inoue, T., Tayasu, I., Miller, L., Takeichi, S., and Abe, T. 1998. Methane and hydrogen production in a termite- symbiont system. Ecological Research 13: 241-257. https://doi.org/10.1046/j.1440-1703.1998.00262.x
  72. Takamura, K. 2001. Effects of termite exclusion on decay of heavy and light hardwood in a tropical rain forest of Peninsular Malaysia. Journal of Tropical Ecology 17: 541-548. https://doi.org/10.1017/S0266467401001407
  73. Takematsu, Y. 2006. Present status of taxonomy of termites in Japan. House and Household Insect Pests 28: 29-35. (In Japanese)
  74. Traore, S., Tigabu, M., Jouquet, P., Ouedraogo, S.J., Guinko, S., and Lepage, M. 2015. Long-term effects of Macrotermes termites, herbivores and annual early fire on woody undergrowth community in Sudanian woodland, Burkina Faso. Flora 211: 40-50. https://doi.org/10.1016/j.flora.2014.12.004
  75. Traore, S., Tigabu, M., Ouedraogo, S.J., Boussim, J.I., Guinko, S., and Lepage, M.G. 2008. Macrotermes mounds as sites for tree regeneration in a Sudanian woodland (Burkina Faso). Plant Ecology 198: 285-295. https://doi.org/10.1007/s11258-008-9404-3
  76. Ulyshen, M.D. 2014a. Interacting effects of insects and flooding on wood decomposition. PLoS ONE 9: 9.
  77. Ulyshen, M.D. 2014b. Wood decomposition as influenced by invertebrates. Biological Reviews. (online published)
  78. Ulyshen, M.D., and Wagner, T.L. 2013. Quantifying arthropod contribution to wood decay. Methods in Ecology and Evolution 4: 345-352. https://doi.org/10.1111/2041-210x.12012
  79. Ulyshen, M.D., Wagner, T.L., and Mulrooney, J.E. 2014. Contrasting effects of insect exclusion on wood loss in a temperate forest. Ecosphere 5: 15. https://doi.org/10.1890/ES13-00238.1
  80. Usher, M.B. 1975. Studies on a wood-feeding termite commutity in Ghana, West Africa. Biotropica 7: 217-233. https://doi.org/10.2307/2989735
  81. Vasconcellos, A., and Moura, F.M.D.S. 2010. Wood litter consumption by three species of Nasutitermes termites in an area of the Atlantic Coastal Forest in northeastern Brazil. Journal of Insect Science 10: 9.
  82. Warren, R.J., and Bradford, M.A. 2012. Ant colonization and coarse woody debris decomposition in temperate forests. Insectes Sociaux 59: 215-221. https://doi.org/10.1007/s00040-011-0208-4
  83. Watson, J.P. 1975. The composition of termite (Macrotermes spp.) mounds on soil derived from basic rock in three rainfall zones of Rhodesia. Geoderma 13: 147-158.
  84. Whitford, W.G., Steinberger, Y., and Ettershank, G. 1982. Contributions of subterranean termites to the "economy" of Chihuahuan Desert ecosystems. Oecologia 55: 298-302. https://doi.org/10.1007/BF00376915
  85. Wood, T.G., and Johnson, R.A. 1983. Modification of soils in Nigerian savanna by soil-feeding Cubitermes (Isoptera, Termitidae). Soil Biology and Biochemistry 15: 575-579. https://doi.org/10.1016/0038-0717(83)90052-4
  86. Yamauchi, K., Ohdake, J., and Ishikura, H. 1998. Termite control technology in the new era - termite colony elimination by the sentricon system-. House and Household Insect Pests 20: 17-24. (In Japanese)
  87. Yasuda, I., Nakasone, Y., Kinjo, K., and Yaga, S. 2000. Morphology and distribution of termites in Ryukyu Islands and North and South Daito Islands. Japanese Journal of Entomology 3: 139-156. (In Japanese with English abstract)
  88. Yoshimura, T. 2011. Strategies towards the integrated management of the invasive dry-wood termite, Incisitermes minor. Mokuzai Gakkaishi 57: 329-339. (In Japanese with English abstract) https://doi.org/10.2488/jwrs.57.329