DOI QR코드

DOI QR Code

Development of Urban Flood Risk Index for the Cheonggyecheon Watershed Using SWMM

SWMM을 이용한 청계천 유역의 도시홍수 위험도 지수 개발

  • 양정석 (국민대학교 건설시스템공학부) ;
  • 김일환 (국민대학교 건설시스템공학부)
  • Received : 2016.01.12
  • Accepted : 2016.04.12
  • Published : 2016.06.01

Abstract

In this study, we analyzed th Cheonggyecheon watershed for urban flood risk index. SWMM model configuration based on each watershed data. And it was set as the final index calculated indicators related to the humanities, social and environmental. Each indicator was standardized and weighted using the Delphi method. Finally, select the danger area through urban flood risk index. Determined 12 indices according to the hazard and vulnerability. Vulnerability is selected the index divided by three factors. 21 watersheds were analyzed through urban flood risk index. The top of three areas of index is Jeongneung 1, Majang, Pil-dong, each index is 0.533, 0.494, 0.381. The lowest index is soongin 0.216. Urban flood risk index developed in this study can be applied to other regions in Korea for establishing national water resources management plan.

본 연구에서는 도시홍수 위험도 지수 산정을 위하여 청계천 및 정릉천 유역을 분석하였다. 각 유역 배수구역별 자료를 토대로 SWMM 모델링을 구축하고 인문, 사회 환경과 관련하여 최종 지수 산정을 위한 지표를 선정하였다. 수집된 자료는 요소에 따라 정의하였다. 각 요소별 가중치는 Delphi 기법을 이용하였으며, 각 지표에 대한 표준화를 실시하고 최종적으로 위험도에 따른 위험 유역을 선정 했다. 유해성 및 취약성에 따라 12개의 지표를 결정하였다. 그중 취약성의 경우 세분화하여 3가지 요소로 나누어 지표를 선정했다. 총 21개의 배수구역별 지수를 산정하였으며 정릉1이 0.533, 마장 0.494, 필동 0.381, 순으로 나타났으며, 가장 적은 지수는 숭인 0.216으로 나타났다. 도시홍수 위험도 지수를 통해 우리나라 전 지역에 적용하게 되면 향후 수자원 정책 수립에 있어서 많은 도움이 될 것으로 사료된다.

Keywords

References

  1. Asian Development Bank (ADB) (2013). Development Effectiveness Report 2013: Private Sector Operations, Available at: http://www.adb.org/ (Accessed: July 10, 2014).
  2. Choi, G. Y., Kwon, W. T., Boo, K. O. and Cha, Y. M. (2008). "Recent spatial and temporal changes in means and extreme events of temperature and precipitation across the republic of Korea." The Korean Geographical Society, Vol. 43, No. 5, pp. 681-700 (in Korean).
  3. Intergovernmental Panel on Climate Change (IPCC) (2007). Climate Change 2007: The Physical Science Basis, Cambridge, United Kingdom.
  4. Jang, Y. S., Mun, S. H. and Yang, S. L. (2013). "An analysis of flood mitigation effect applying to LID in mokgamcheon watershed using SWMM model." Korean Society of Road Engineers, Vol. 15, No. 3, pp. 75-83 (in Korean).
  5. Kim, B. K., Jang, D. W., Zhang, N. and Yang, D. M. (2011). "The deduction of urban flood risk factor considering climate change." Journal of safety and crisis management, Vol. 7, No. 1, pp. 125-142 (in Korean).
  6. Yang, J. S. and Kim, I. H. (2013). "Analysis of promising country for seawater desalination plant using delphi method." Journal of the Korean Society of Civil Engineers, Vol. 33, No. 6, pp. 2351-2357 (in Korean). https://doi.org/10.12652/Ksce.2013.33.6.2351
  7. Kim, J. S., Sung, H. H. and Choi, G. Y. (2013). "Spatial patterns of urban flood vulnerability in Seoul." The Korean Geographical Society, Vol. 19, No. 4, pp. 615-626 (in Korean).
  8. Korea Meteorological Administration (KMA) (2009). Korea Meteorological Administration all rights reserved, Available at: http://www.kma.go.kr/weather/ observation/aws_table_popup.jsp (Accessed: April 10, 2014) (in Korean).
  9. Kubal, C., Haase, D., Meyer, V. and Scheuer, S. (2009). "Integrated urban flood risk assessment - adapting a multicriteria approach to a city." Natural Hazards and Earth System Sciences, Vol. 9, pp. 1881-1895. https://doi.org/10.5194/nhess-9-1881-2009
  10. Lee, J. M., Hyun, K. H. and Yuh, O. K. (2010). "An analysis on the hydrologic cycle effect of roadway permeable pavement in residential site." Journal of Korean Society on Water Quality, Vol. 26, No. 4, pp. 691-699 (in Korean).
  11. Lee, J. S. (2001). Method of Delphi, Publisher of Education and Science (in Korean).
  12. Maskrey, A. (1989). Disaster mitigation: A community based approach, Development Guidelines, Oxford, London.
  13. Ministry of Land, Infrastructure and Transport (MOLIT) (2014). Ministry of Land, Infrastructure and Transport All Rights reserved, Available at: http://www.molit.go.kr/USR/NEWS/m_71/lst.jsp (Accessed: July 21, 2014) (in Korean).
  14. Seoul Metropolitan Government (2013). Seoul Metropolitan Government all rights reserved, Available at: http://stat.seoul.go.kr/index.jsp (Accessed: April 10, 2014) (in Korean).
  15. Seoul Statistics (2014). Copyright Seoul Metropolitan Government All rights reserved, Available at: http://stat.seoul.go.kr/jsp3/index.jsp (Accessed: April 7, 2016) (in Korean).
  16. Son, M. W., Sung, J. Y., Chung, E. S. and Jun, K. S. (2011). "Development of flood vulnerability index considering climate change." JKWRA, Vol. 44, No. 3, pp. 231-248 (in Korean).
  17. World Bank (WB) (2013). World Development Report 2014 : Risk and Opportunity-Managing Risk for Development, Washington, DC. (C) World Bank. Available at: https://openknowledge.worldbank. org/handle/10986/16092 (Accessed: January 10, 2013).
  18. Yoon, S. K. (2012). "Flood risk and vulnerability analysis in an urban stream by climate change." University of Seoul, Graduate Doctoral Dissertation (in Korean).
  19. Yoon, S. K., Kim, J. S. and Moon, Y. I. (2014). "Integrated flood risk analysis in a changing climate: A Case Study from the Korean Han River Basin." KSCE Journal of Civil Engineering, Vol. 18, No. 5, pp. 1563-1571 (in Korean). https://doi.org/10.1007/s12205-014-0147-5
  20. Yu, G. Y. and Yu, I. A. (2008). "Introduction method development and vulnerability assessment index of climate change." Korea Environment Institute (in Korean).