DOI QR코드

DOI QR Code

Analysis of Hygrothermal Performance for Standard Wood-frame Structures in Korea

국내 농어촌 표준 목조주택의 hygrothermal 성능 분석

  • Chang, Seong Jin (Building Environment & Materials Lab., School of Architecture, Soongsil University) ;
  • Kang, Yujin (Building Environment & Materials Lab., School of Architecture, Soongsil University) ;
  • Wi, Seunghwan (Building Environment & Materials Lab., School of Architecture, Soongsil University) ;
  • Jeong, Su-Gwang (Building Environment & Materials Lab., School of Architecture, Soongsil University) ;
  • Kim, Sumin (Building Environment & Materials Lab., School of Architecture, Soongsil University)
  • 장성진 (숭실대학교 건축학부 건축환경재료연구실) ;
  • 강유진 (숭실대학교 건축학부 건축환경재료연구실) ;
  • 위승환 (숭실대학교 건축학부 건축환경재료연구실) ;
  • 정수광 (숭실대학교 건축학부 건축환경재료연구실) ;
  • 김수민 (숭실대학교 건축학부 건축환경재료연구실)
  • Received : 2016.01.05
  • Accepted : 2016.02.02
  • Published : 2016.05.25

Abstract

As recent buildings become more air tight, the natural ventilation rate is significantly reduced and it leads to difficulty in removing accumulated moisture in buildings. Hot and humid weather in summer and the large amount of moisture caused by indoor activity are the major factors of moisture problem in Korea. The hygrothermal behavior of building environment has to be considered carefully to reduce condensation risk and mold growth potential, and comfortable indoor environment. In this study, we evaluated hygrothermal behavior of Standard Wood-frame Structure published in the Korea Rural Community Corporation Using WUFI simulation program. The results indicated that the total water contents of wood wall measured in 2014 was lower than wood wall in 2010. As a result of evaluation by separating the farming and fishing areas, Moisture problems in fishing area became larger. The walls had a significant impact on the relative humidity than the temperature each areas. Furthermore, excessive water content problem of the wood-based material was reduced in the wall that could be applied in the fishing villages by changing the outdoor finishing materials. And Mold growth risk on the interior materials could be removed through the different setting of the indoor temperature during summertime.

본 연구는 WUFI Pro 5.3을 이용하여 한국농어촌공사에서 제시하고 있는 농어촌 표준 목조주택 설계를 기준으로 목조 벽체의 hygrothermal 거동에 대한 평가를 실시하였다. 그 결과, 2010년도에 제시된 벽체보다 2014년도에 개선된 벽체의 Total Water Contents (TWC)가 더 낮게 나타난 것을 확인하였고, 3년간의 평가에서 TWC가 일정하게 유지되는 동적 안정 상태에 도달하였음을 보아 hygrothermal 환경을 적절히 고려하는 개선임을 확인하였다. 또한 농촌지역과 어촌지역을 구분지어 hygrothermal 거동을 평가한 결과, 벽체가 해당지역의 온도보다 상대습도에 큰 영향을 미치는 것을 확인하였다. 또한, 목재 기반 재료의 과도한 수분 함량 문제는 실외마감의 재료를 바꾸는 것으로 어촌지역에도 적용이 가능한 벽체로 개선할 수 있었다. 곰팡이 성장 위험의 경우, 초기 실내 설정온도에서 여름철에 곰팡이가 성장할 가능성이 높은 것으로 나타났으며, 이를 고려하여 여름철 실내 설정온도를 변화시키는 것으로 개선되었다. 이러한 결과를 통해, 건축설계 단계에서 WUFI 프로그램과 같은 hygrothermal 거동 분석 프로그램을 이용하여 건축물의 수분에 대한 문제를 미리 분석하고 이에 맞는 벽체의 개선이 필요하다고 판단된다.

Keywords

References

  1. Ahrab, M.A.M., Akbari, H. 2013. Hygrothermal behaviour of flat cool and standard roofs on residential and commercial buildings in North America. Building and Environment 60: 1-11.
  2. Andreas, O., Holm, A., Lucas, F.M. 2013. SpringerBriefs in Applied Sciences and Technology.
  3. Chang, S.J., Kim, S. 2015. Hygrothermal performance of exterior wall structures using a heat, air and moisture modeling. Conference of the Architectural Institute of Korea 35(1): 343-344.
  4. Ibrahim, M., Wurtz, E., Biwole, P.H. 2014. Hygrothermal performance of exterior walls covered with aerogel-based insulating rendering. Energy and Buildings 84: 241-251. https://doi.org/10.1016/j.enbuild.2014.07.039
  5. John, S., Eric, B. 2013. Overview of Hygrothermal (HAM) Analysis Methods.
  6. Kim, S.H., Yu, S., Seo, J., Kim, S. 2013. Thermal performance of wooden building envelope by thermal conductivity of structural members, Journal of the Korean Wood Science and Technology 41(6): 515-527. https://doi.org/10.5658/WOOD.2013.41.6.515
  7. Mcclung, R., Ge, H., Straube, J., Wang, J. 2014. Hygrothermal performance of cross-laminated timber wall assemblies with built-in moisture: field measurements and simulations. Building and Environment 71: 95-110.
  8. Moon, H.J., Ryu, S.H., Kim, S.K. 2012. Measurement and application of hygrothermal properties of building materials for moisture and biological contaminations control in built environment. Journal of the Architectural Institute of Korea 28(3): 227-234.
  9. Mundt-Petersen, S.O., Harderup, L.E. 2015. Predicting hygrothermal performance in cold roofs using a 1D transient heat and moisture calculation tool. Building and Environment 90: 215-231. https://doi.org/10.1016/j.buildenv.2015.04.004
  10. Ryu S.H. Analysis of Energy Efficiency and Hygrothermal Performance in Buildings. thesis, Dankook University, Korea, 2010.
  11. Sedlbaure, K., Breuer, K. 2003. Mould growth prediction with a new biohygrothermal method and its application in practice. thesis, University of Stuttgart, Germany.
  12. Yu, S., Kim S.H., Seo, J., Kim, S. 2013. Analysis of energy efficiency of light-weigh wood frame house and wooden passive house using PHPP, Journal of the Architectural Institute of Korea 29(8): 199-207.
  13. Zirkelbach, D., Schmidt, T., Kehrer, M., Kunzel, H.M. 2007. WUFI Pro manual. Fraunhofer Institute.