DOI QR코드

DOI QR Code

Bezier curve smoothing of cumulative hazard function estimators

  • Cha, Yongseb (Department of Statistics, Pusan National University) ;
  • Kim, Choongrak (Department of Statistics, Pusan National University)
  • Received : 2015.12.16
  • Accepted : 2016.03.23
  • Published : 2016.05.31

Abstract

In survival analysis, the Nelson-Aalen estimator and Peterson estimator are often used to estimate a cumulative hazard function in randomly right censored data. In this paper, we suggested the smoothing version of the cumulative hazard function estimators using a Bezier curve. We compare them with the existing estimators including a kernel smooth version of the Nelson-Aalen estimator and the Peterson estimator in the sense of mean integrated square error to show through numerical studies that the proposed estimators are better than existing ones. Further, we applied our method to the Cox regression where covariates are used as predictors and suggested a survival function estimation at a given covariate.

Keywords

References

  1. Aalen OO (1978). Nonparametric inference for a family of counting process, Annals of Statistics, 6, 701-726. https://doi.org/10.1214/aos/1176344247
  2. Bae W, Choi H, Park BU, and Kim C (2005). Smoothing techniques for the bivariate Kaplan-Meier estimator, Communications in Statistics - Theory and Methods, 34, 1659-1674. https://doi.org/10.1081/STA-200063317
  3. Bae W, Kim R, and Kim C (2014). Nonparametric estimation of distribution function using Bezier curve, Communications for Statistical Applications and Methods, 21, 105-114. https://doi.org/10.5351/CSAM.2014.21.1.105
  4. Bezier P (1977). Essay de definition numerique des courbes et des surfaces experimentals (Doctoral dissertation), University of Paris VI, France.
  5. Cox DR (1972). Regression models and life-tables, Journal of the Royal Statistical Society, 34, 187-202.
  6. Farin G (2001). Curves and Surfaces for Computer-Aided Geometric Design: A Practical Guide (5th ed), Morgan Kaufmann Publishers, San Francisco, CA.
  7. Fleming TR and Harrington DP (1979). Nonparametric estimation of the survival distribution in censored data, Unpublished manuscript.
  8. Kaplan EL and Meier P (1958). Nonparametric estimation from incomplete observation, Journal of the American Statistical Association, 53, 457-481. https://doi.org/10.1080/01621459.1958.10501452
  9. Kim C (1996). Nonparametric density estimation via the Bezier curve, In Proceeding of the ASA Section on Statistical Graphics, Chicago, IL, 25-28.
  10. Kim C, Hong C, and Jeong M (2000). Simulation-extrapolation via the Bezier curve in measurement error models, Communications in Statistics - Simulation and Computation, 29, 1135-1147. https://doi.org/10.1080/03610910008813657
  11. Kim C, Kim W, Park BU, Hong C, and Jeong M (1999). Smoothing techniques via the Bezier curve, Communications in Statistics - Theory and Methods, 28, 1577-1597. https://doi.org/10.1080/03610929908832374
  12. Kim C, Park BU, Kim W, and Lim C (2003). Bezier curve smoothing of the Kaplan-Meier estimator, Annals of the Institute of Statistical Mathematics, 55, 359-367.
  13. Kim C and Park JH (2012). On the selection of Bezier points in Bezier curve smoothing, Korean Journal of Applied Statistics, 25, 1049-1058. https://doi.org/10.5351/KJAS.2012.25.6.1049
  14. Nelson W(1972). Theory and applications of hazard plotting for censored failure data, Technometrics, 14, 945-966. https://doi.org/10.1080/00401706.1972.10488991
  15. Peterson AV (1977). Expressing the Kaplan-Meier estimator as a funtion of empirical subsurvival functions, Journal of the American Statistical Association, 72, 854-858.
  16. Tanner MA and Wong WH (1983). The estimation of the hazard function from randomly censored data by the kernel method, Annals of Statistics, 11, 989-993. https://doi.org/10.1214/aos/1176346265