Abstract
The Adaboost chooses a good set of features in rounds. On each round, it chooses the optimal feature and its threshold value by minimizing the weighted error of classification. The involved process of classification performs a hard decision. In this paper, we expand the process of classification to a soft fuzzy decision. We believe this expansion could allow some flexibility to the Adaboost algorithm as well as a good performance especially when the size of a training data set is not large enough. The typical Adaboost algorithm assigns a same weight to each training datum on the first round of a training process. We propose a new algorithm to assign different initial weights based on some statistical properties of involved features. In experimental results, we assess that the proposed method shows higher performance than the traditional one.
Adaboost 학습 알고리즘은 학습 단계마다 가장 좋은 특징을 선택하도록 하는 학습 알고리즘 이다. 각 학습 단계에서는 최적의 특징을 선택하기 위해 특정 임계값과 그에 대한 최소 오차율을 가지는 특징을 선택하도록 되어 있다. 하지만, 임계값을 이용하는 방법은 최적의 오차율을 검출하는데 있어 효율적인 방법이 아니다. 본 논문에서는 최적의 오차율을 검출하기 위한 퍼지 Adaboost 기법을 제안한다. 퍼지를 통해 결정 경계를 유연하게 한 Adaboost는 학습 단계가 적어도 좋은 성능을 보이는 장점이 있다. 기존의 Adaboost는 학습 전에 학습데이터에 대한 가중치를 동일하게 할당한다. 하지만, 본 논문에서는 이에 대한 가중치를 확률을 이용하여 초기 가중치를 다르게 줌으로서, 적은 학습에도 좋은 결과를 보이는 방법을 제안한다. 실험 결과에서는 기존의 Adaboost와 제안하는 방법에 대한 성능 평가를 통해, 퍼지 Adaboost가 기존 방법에 비해 좋은 결과를 보였다.