References
- Agrawal1, A.K. and Yang, J.N. (2000), "Compensation of time delay for control of civil engineering structures", Earthq. Eng. Struct. Dyn., 29(1), 37-62. https://doi.org/10.1002/(SICI)1096-9845(200001)29:1<37::AID-EQE894>3.0.CO;2-A
- Bharti, S.D., Dumne, S.M. and Shrimali, M.K. (2010), "Seismic response analysis of adjacent buildings connected with MR dampers", Eng. Struct., 32(8), 2122-2133. https://doi.org/10.1016/j.engstruct.2010.03.015
- Cha, Y.J., Agrawal, A.K. and Dyke, S.J. (2013), "Time delay effects on large-scale MR damper based semiactive control strategies", Smart Mater. Struct., 22(1), 151-164.
- Chang, C.C. and Yang, H.T.Y. (1994), "Instantaneous optimal control of building frames", Struct. Eng., ASCE, 120(4), 1307-26. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:4(1307)
- Chen, P.C. and Lee, T.Y. (2008), "Time delay study on the semi-active control with a magnetorheological Damper", Proceedings of 14th World Conference on Earthquake Engineering, China, October.
- Chopra, A.K. (1995), Dynamics of Structures, Printice Hall Publications, New Jersey.
- Dyke, S.J. and Spencer, Jr. B.F. (1997), "A comparison of semi-active control strategies for the MR damper", Iasted international conference, Intelligent Information Systems, Bahamas, December.
- Dyke, S.J., Spencer, B.F., Sain, M.K. and Carlson, J.D. (1996), "Modeling and control of magnetorheological dampers for seismic response reduction", Smart Mater. Struct., 5(5), 565-75. https://doi.org/10.1088/0964-1726/5/5/006
- Housner, G.W., Bergman, L.A., Caughey, T.K., Chassiakos, A.G., Claus RO,Masri, S.F., Skelton, R.E., Soong, T.T., Spencer, B.F. and Yao J.T.P. (1997), "Structural control: past, present, and future", Eng. Mech., ASCE, 123(9), 897-971. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:9(897)
- Klein, R.E., Cusano, C. and Stukel, J. (1972), "Investigation of a Method to Stabilize Wind Induced Oscillations in Large Structures", Proceedings of ASME Winter Annual Meeting, New York, November.
- Lee, T.Y. and Chen, P.C. (2011), "Experimental and analytical study of sliding mode control for isolated bridges with MR dampers", Earthq. Eng., 15(4), 564-581. https://doi.org/10.1080/13632469.2010.524277
- Lee, T.Y. and Kawashima, K. (2007), "Semi-active control of nonlinear isolated bridges with time delay", Struct. Eng., ASCE, 133(2), 235-241. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:2(235)
- Leitmann, G. (1994), "Semi-active control for vibration attenuation", Intell. Mater. Syst. Struct., 5(6), 841-846. https://doi.org/10.1177/1045389X9400500616
- McClamroch, N.H. and Gavin, H.P. (1995), "Closed loop structural control using electrorheological dampers", Proceeding of the American Control Conference, Seattle, Washington.
- Ng, C.L. and Xu, Y.L. (2007), "Semi-active control of a building complex with variable friction dampers", Eng. Struct., 29(6), 1209-1225. https://doi.org/10.1016/j.engstruct.2006.08.007
- Ni, Y.Q., Ko, J.M. and Ying, Z.G. (2001), "Random seismic response analysis of adjacent buildings coupled with non-linear hysteretic dampers", J. Sound Vib., 246(3), 403-17. https://doi.org/10.1006/jsvi.2001.3679
- Ok, S.Y., Song, J. and Park, K.S. (2008), "Optimal design of hysteretic dampers connecting adjacent structures using multi-objective genetic algorithm and stochastic linearization method", Eng. Struct., 30(5), 1240-1249. https://doi.org/10.1016/j.engstruct.2007.07.019
- Qu, W.L. and Xu, Y.L. (2001), "Semi-active control of seismic response of tall buildings with podium structure using ER/MR dampers", Struct. Des. Tall. Buil., 10(3), 179-92. https://doi.org/10.1002/tal.177
- Spencer, Jr. B.F, Dyke, S.J., Sain, M.K. and Carlson, J.D. (1996), "Phenomenological model of a magnetorheological damper", Eng. Mech., 123(3), 230-238.
- Symans, M.D. and Constantinou, M.C. (1995), "Development and experimental study of semi-active fluid damping devices for seismic protection of structures", Technical Rep. NCEER-95-11, National Center for Earthquake Engineering Research, Buffalo.
- Westermo, B. (1989), "The dynamics of inter-structural connection to prevent pounding", Earthq. Engng. Struct. Dyn., 18(5), 687-699. https://doi.org/10.1002/eqe.4290180508
- Xu, Z.D. and Guo, Y.Q. (2008), "Neuro-fuzzy control strategy for earthquake-excited nonlinear magnetorheological structures", Soil Dyn. Earthq. Eng., 28(9), 717-727. https://doi.org/10.1016/j.soildyn.2007.10.013
- Xu, Z.D. and Shen, Y.P. (2003), "Intelligent bi-state control for the structure with magnetorheological dampers", Intell. Mater. Syst. Struct., 14(1), 35-42. https://doi.org/10.1177/1045389X03014001004
- Xu, Z.D., Shen, Y.P. and Guo, Y.Q. (2003), "Semi-active control of structures incorporated with magnetorheological dampers using neural networks", Smart Mater. Struct., 12(1), 80-87. https://doi.org/10.1088/0964-1726/12/1/309
- Yinga, Z.G., Ni, Y.Q. and Kob, J.M. (2004), "Non-linear stochastic optimal control for coupled-structures system of multi-degree-of-freedom", J. Sound Vib., 274(3), 843-861. https://doi.org/10.1016/S0022-460X(03)00610-2
- Zhang, W.S. and Xu, Y.L. (1999), "Dynamic characteristics and seismic response of adjacent buildings linked by discrete dampers", Earthq. Eng. Struct. Dyn., 28(10), 1163-1185. https://doi.org/10.1002/(SICI)1096-9845(199910)28:10<1163::AID-EQE860>3.0.CO;2-0
- Zhang, W.S. and Xu, Y.L. (2000), "Vibration analysis of two buildings linked by maxwell model-defined fluid dampers", J. Sound Vib., 233(5), 775-96. https://doi.org/10.1006/jsvi.1999.2735
- Zhu, H.P., Ge, D.D. and Huang, X. (2011), "Optimum connecting dampers to reduce the seismic responses of parallel structures", J. Sound Vib., 330(9), 1931-1949. https://doi.org/10.1016/j.jsv.2010.11.016
Cited by
- Analog active valve control design for non-linear semi-active resetable devices vol.19, pp.5, 2016, https://doi.org/10.12989/sss.2017.19.5.487
- The seismic reliability of two connected SMRF structures vol.13, pp.2, 2016, https://doi.org/10.12989/eas.2017.13.2.151
- Optimal Allocation and Control of Magnetorheological Dampers for Enhancing Seismic Performance of the Adjacent Structures Using Whale Optimization Algorithm vol.2021, pp.None, 2016, https://doi.org/10.1155/2021/1218956