Acknowledgement
Supported by : King Abdulaziz University
References
- Abolbashari, M.H., Nazari, F. and Rad, J.S. (2014), "A multi-crack effects analysis and crack identification in functionally graded beams using particle swarm optimization algorithm and artificial neural network", Struct. Eng. Mech., 51(2), 299-313 https://doi.org/10.12989/sem.2014.51.2.299
- Al-Waily, M. (2013), "Theoretical and numerical vibration study of continuous beam with crack size and location effect", Int. J. Innov. Res. Sci. Eng. Tech., 2(9), 4166-4177.
- Andreaus, U., Casini, P. and Vestroni, F. (2007), "Non-linear dynamics of a cracked cantilever beam under harmonic excitation", Int. J. Nonlin. Mech., 42(3), 566-575. https://doi.org/10.1016/j.ijnonlinmec.2006.08.007
- Behzad, M., Ebrahimi, A. and Meghdari, A. (2010), "A continuous vibration theory for beams with a vertical edge crack", Scientia Iranica, 17(3), 194-204.
- Christides, S. and Barr, A. (1984), "One dimensional theory of cracked Bernoulli-Euler beams", Int. J. Mech. Sci., 26(11-12), 639-648. https://doi.org/10.1016/0020-7403(84)90017-1
- Dimarogonas, A.D. (1996), "Vibration of cracked structures: a state of the art review", Eng. Fract. Mech., 55(5), 831-857. https://doi.org/10.1016/0013-7944(94)00175-8
- Doebling, S., Farrar, C., Prime, M. and Shevitz, D. (1996), "Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review", Los Alamos National Laboratory Report.
- Friswell, M. and Penny, J. (2002), "Crack modeling for structural health monitoring", Struct. Hlth. Monit., 1(2), 139-148. https://doi.org/10.1177/1475921702001002002
- Khorram, A., Bakhtiari-Nejad, F. and Rezaein, M. (2012), "Comparison studies between two wavelet based cracked detection methods of a beam subjected to a moving load", Int. J. Eng. Sci., 51, 204-215. https://doi.org/10.1016/j.ijengsci.2011.10.001
- Khorram, A., Rezaien, M. and Bakhtiari-Nejad, F. (2013), "Multiple cracks detection in a beam subjected to a moving load using wavelet analysis with factorial design", Eur. J. Mech. A/Solid., 40, 97-113. https://doi.org/10.1016/j.euromechsol.2012.12.012
- Li, Q.S. (2002), "Free vibration analysis of non uniform beams with an arbitrary number of cracks and concentrated masses", J. Sound Vib., 252(3), 509-525. https://doi.org/10.1006/jsvi.2001.4034
- Loutridis, S., Douka, E. and Trochidis, A. (2004), "Crack identification in double-cracked beams using wavelet analysis", J. Sound Vib., 277(4), 1025-1039. https://doi.org/10.1016/j.jsv.2003.09.035
- Nassar, M., Matbuly, M.S. and Ragb, O. (2012), "Vibration analysis of structural elements using differential quadrature method", J. Adv. Res., 4, 93-102.
- Orhan, S. (2007), "Analysis of free and forced vibration of a cracked cantilever beam", NDT&E Int., 40, 443-450. https://doi.org/10.1016/j.ndteint.2007.01.010
- Ovanesova, A. and Suarez, L. (2004), "Applications of wavelet transforms to damage detection in frame structures", Eng. Struct., 26, 39-49. https://doi.org/10.1016/j.engstruct.2003.08.009
- Papadopoulos, C.A. (2008), "The strain energy release approach for modeling cracks in rotors: a state of the art review", Mech. Syst. Signal Pr., 22, 763-789. https://doi.org/10.1016/j.ymssp.2007.11.009
- Ramon, S., Luciano, M. and Brito, M. (2012), "Determination of damages in beams using wavelet transforms", Proceedings of the World Congress on Engineering, 1211-1213.
- Salawu, O. (1997), "Detection of structural damage through changes in frequency: a review", Eng. Struct., 19(9), 718-723. https://doi.org/10.1016/S0141-0296(96)00149-6
- Shifrin, E. and Ruotolo, R. (1999), "Natural frequencies of a beam with an arbitrary number of cracks", J. Sound Vib., 222(3), 409-423. https://doi.org/10.1006/jsvi.1998.2083
- Tada, H., Paris, P.C. and R.Irwin, G. (2000), The Stress Analysis of Cracks Handbook, ASME Press, New York.
- Torabi, K., Afshari, H. and Haji Aboutalebi, F. (2014), "A DQEM for transverse vibration analysis of multiple cracked non-uniform Timoshenko beams with general boundary conditions", Comput. Math. Appl., 67(3), 527-541. https://doi.org/10.1016/j.camwa.2013.11.010
- Vosoughi, A.R. (2015), "A developed hybrid method for crack identification of beams", Smart Struct. Syst., 16(3), 401-414. https://doi.org/10.12989/sss.2015.16.3.401
- Zhi, Z. and Yingyan, Z. (2008), Advanced Differential Quadrature Methods, CRC Press.
- Zhu, X. and Law, S. (2006), "Wavelet-based crack identification of bridge beam from operational deflection time history", Int. J. Solid. Struct., 43, 2299-2317. https://doi.org/10.1016/j.ijsolstr.2005.07.024
Cited by
- Vibration and multi-crack identification of Timoshenko beams under moving mass using the differential quadrature method vol.120, 2017, https://doi.org/10.1016/j.ijmecsci.2016.11.014
- Multi-cracks identification based on the nonlinear vibration response of beams subjected to moving harmonic load vol.83, 2016, https://doi.org/10.1051/matecconf/20168306003
- Crack identification based on the nonlinear response of plates with variably oriented surface crack. vol.149, pp.2261-236X, 2018, https://doi.org/10.1051/matecconf/201714902061
- Crack identification based on the nonlinear response of plates with variably oriented surface crack. vol.149, pp.2261-236X, 2018, https://doi.org/10.1051/matecconf/201814902061
- Comparisons of wavelets and contourlets for vibration-based damage identification in the plate structures pp.2048-4011, 2019, https://doi.org/10.1177/1369433218824903