참고문헌
- Al-Bermani, F.G. and Kitipornchai, S. (1990), "Nonlinear analysis of thin-walled structures using least element/member", J. Struct. Eng., 116(1), 215-234. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:1(215)
- Aristizabal-Ochoa, J.D. (1997), "First- and second-order stiffness matrices and load vector of beam-columns with semi-rigid connections", J. Struct. Eng., ASCE, 123(5), 669-78. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:5(669)
- Aristizabal-Ochoa, J.D. (2008), "Slope-deflection equations for stability and second-order analysis of Timoshenko beam-column structures with semi-rigid connections", Eng. Struct., 30(9), 2517-2527. https://doi.org/10.1016/j.engstruct.2008.02.007
- Aristizabal-Ochoa, J.D. (2012), "Matrix method for stability and second-order analysis of Timoshenko beam-column structures with semi-rigid connections", Eng. Struct., 34, 289-302. https://doi.org/10.1016/j.engstruct.2011.09.010
- Balling, R.J. and Lyon, J.W. (2010), "Second-order analysis of plane frames with one element per member", J. Struct. Eng., 137(11), 1350-1358. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000369
- Bryant, R.H. and Baile, O.C. (1977), "Slope deflection analysis including transverse shear", J. Struct. Div., 103(2), 443-6.
- Chan, S.L. and Zhou, Z.H. (1994), "Point wise equilibrating polynomial element for nonlinear analysis of frames", J. Struct. Eng., 120(6), 1703-1717. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:6(1703)
- Chan, S.L. and Zhou, Z.H. (1995), "Second-order elastic analysis of frames using single imperfect element per member", J. Struct. Eng., 121(6), 939-945. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:6(939)
- Eltaher, M.A., Khater, M.E., Park, S., Abdel-Rahman, E. and Yavuz, M. (2016) "On the static stability of nonlocal nanobeams using Higher-order beam theories", Adv. Nano. Res., 4(1), 51-64. https://doi.org/10.12989/anr.2016.4.1.051
- Ermopoulos, J C. (1988), "Slope-deflection method and bending of tapered bars under stepped loads", J. Constr. Steel Res., 11(2), 121-141. https://doi.org/10.1016/0143-974X(88)90047-8
- Ibearugbulem, O.M., Ettu, L.O. and Ezeh, J.C. (2013), "A new stiffness matrix for analysis of flexural line continuum", Int. J. Eng. Sci., 2(2), 57-62.
- Iu, C.K. and Bradford, M.A. (2010), "Second-order elastic finite element analysis of steel structures using a single element per member", Eng. Struct., 32(9), 2606-2616. https://doi.org/10.1016/j.engstruct.2010.04.033
- Nguyen, N.H. and Lee, D.Y. (2015), "Bending analysis of a single leaf flexure using higher-order beam theory", Struct. Eng. Mech., 53(4), 781-790. https://doi.org/10.12989/sem.2015.53.4.781
- Saffari, H., Rahgozar, R. and Jahanshahi, R. (2008), "An efficient method for computation of effective length factor of columns in a steel gabled frame with tapered members", J. Constr. Steel Res., 64(4), 400-406. https://doi.org/10.1016/j.jcsr.2007.09.001
- Samuelsson, A. and Zienkiewicz, O.C. (2006), "History of the stiffness method", Int. J. Numer. Meth. Eng., 67, 149-157. https://doi.org/10.1002/nme.1510
- Senjanovic, I., Vladimir, N. and Cho, D. S. (2012), "A simplified geometric stiffness in stability analysis of thin-walled structures by the finite element method", Int. J. Nav. Arch. Ocean., 4(3), 313-321. https://doi.org/10.3744/JNAOE.2012.4.3.313
- Bathe, K.J. (1996), Finite Element Procedures, Prentice Hall.
- Kassimali, A. (1998), Structural Analysis, 2nd Edition, Thomson-Engineering.
- Lui, E.M. and Chen, W.F. (1987), Structural Stability: Theory and Implementation, Elsevier.
- Norris, C.H. and Wilbur, J.B. (1960), Elementary Structural Analysis, McGraw-Hill Book Co.
- Salmon, C.G. and Johnson, J.E. (1996), Steel structures: design and behavior, 4th Edition, Harper Collins College Publisher, Chapter 14.
- Timoshenko, S.P. and Gere, J.M (1961), Theory of Elastic Stability, McGraw-Hill New York.
- Wilson, W.M. and Maney, G.A. (1915), Slope-deflection Method, University of Illinois Engineering Experiment Station, Bulletin.
- Zienkiewicz, O.C. (1971), The Finite Element Method In Engineering Science, London, McGraw-Hill.
피인용 문헌
- Closed-form solutions for non-uniform axially loaded Rayleigh cantilever beams vol.60, pp.3, 2016, https://doi.org/10.12989/sem.2016.60.3.455