Acknowledgement
Supported by : MINECO (Ministerio de Economia y Competitividad), FEDER (Fondo Europeo de Desarrollo Regional)
References
-
L. J. Alias, A. Ferrandez, and P. Lucas, Surfaces in the 3-dimensional LorentzMinkowski space satisfying
${\Delta}$ $_{x}$ = A$_{x}$ + B, Pacific J. Math. 156 (1992), no. 2, 201-208. https://doi.org/10.2140/pjm.1992.156.201 -
L. J. Alias, A. Ferrandez, and P. Lucas, Submanifolds in pseudo-Euclidean spaces satisfying the condition
${\Delta}x$ = Ax+B, Geom. Dedicata 42 (1992), no. 3, 345-354. https://doi.org/10.1007/BF02414072 -
L. J. Alias, A. Ferrandez, and P. Lucas, Hypersurfaces in space forms satisfying the condition
${\Delta}x$ = Ax + B, Trans. Amer. Math. Soc. 347 (1995), no. 5, 1793-1801. https://doi.org/10.1090/S0002-9947-1995-1257095-8 - L. J. Alias and N. Gurbuz, An extension of Takahashi theorem for the linearized operators of the higher order mean curvatures, Geom. Dedicata 121 (2006), 113-127.
-
L. J. Alias and M. B. Kashani, Hypersurfaces in space forms satisfying the condition
$L_k{\Psi}\;=\;A{\Psi}+b$ , Taiwanese J. Math. 14, no. 5 (2010), no. 5, 1957-1978. https://doi.org/10.11650/twjm/1500406026 -
M. Barros and O. J. Garay, 2-type surfaces in
$\mathbb{S}^3$ , Geom. Dedicata 24 (1987), no. 3, 329-336. https://doi.org/10.1007/BF00181605 - E. Cartan, Familles de surfaces isoparametriques dans les espaces a courbure constante, Ann. Mat. Pura Appl. 17 (1938), no. 1, 177-191. https://doi.org/10.1007/BF02410700
- E. Cartan, Sur des familles remarquables d'hypersurfaces isoparametriques dans les espaces spheriques, Math. Z. 45 (1939), 335-367. https://doi.org/10.1007/BF01580289
- E. Cartan, Sur quelque familles remarquables d'hypersurfaces, C. R. Congres Math. Liege (1939), 30-41.
-
S. Chang, A closed hypersurface of constant scalar curvature and constant mean curvature in
$S^{4}$ is isoparametric, Comm. Anal. Geom. 1 (1993), 71-100. https://doi.org/10.4310/CAG.1993.v1.n1.a4 -
S. Chang, On closed hypersurfaces of constant scalar curvatures and mean curvatures in
$S^{n+1}$ , Pacific J. Math. 165 (1994), no. 1, 67-76. https://doi.org/10.2140/pjm.1994.165.67 - B. Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, Series in Pure Mathematics, 1. World Scientific Publishing Co., Singapore, 1984.
- B. Y. Chen, Finite Type Submanifolds and Generalizations, University of Rome, Rome, 1985.
- B. Y. Chen, Finite type submanifolds in pseudo-Euclidean spaces and applications, Kodai Math. J. 8 (1985), no. 3, 358-375. https://doi.org/10.2996/kmj/1138037104
- B. Y. Chen, 2-type submanifolds and their applications, Chinese J. Math. 14 (1986), no. 1, 1-14.
- B. Y. Chen, Tubular hypersurfaces satisfying a basic equality, Soochow J. Math. 20 (1994), no. 4, 569-586.
- B. Y. Chen, A report on submanifolds of finite type, Soochow J. Math. 22 (1996), no. 2, 117-337.
- B. Y. Chen, Some open problems and conjectures on submanifolds of finite type: recent development, Tamkang J. Math. 45 (2014), no. 1, 87-108. https://doi.org/10.5556/j.tkjm.45.2014.1564
- B. Y. Chen, M. Barros, and O. J. Garay, Spherical finite type hypersurfaces, Alg. Groups Geom. 4 (1987), no. 1, 58-72.
- B. Y. Chen and M. Petrovic, On spectral decomposition of immersions of finite type, Bull. Austral. Math. Soc. 44 (1991), no. 1, 117-129. https://doi.org/10.1017/S0004972700029518
- S. De Almeida and F. Brito, Closed 3-dimensional hypersurfaces with constant mean curvature and constant scalar curvature, Duke Math. J. 61 (1990), no. 1, 195-206. https://doi.org/10.1215/S0012-7094-90-06109-5
- F. Dillen, J. Pas, and L. Verstraelen, On surfaces of finite type in Euclidean 3-space, Kodai Math. J. 13 (1990), no. 1, 10-21. https://doi.org/10.2996/kmj/1138039155
- V. N. Faddeeva, Computational Methods of Linear Algebra, Dover Publ. Inc, 1959, New York.
- O. J. Garay, An extension of Takahashi's theorem, Geom. Dedicata 34 (1990), no. 2, 105-112. https://doi.org/10.1007/BF00147319
-
T. Hasanis and T. Vlachos, A local classification of 2-type surfaces in
$S^{3}$ , Proc. Amer. Math. Soc. 112, no. 2 (1991), 533-538. https://doi.org/10.1090/S0002-9939-1991-1059626-1 - T. Hasanis and T. Vlachos, Spherical 2-type hypersurfaces, J. Geometry 40 (1991), no. 1-2, 82-94. https://doi.org/10.1007/BF01225875
-
T. Hasanis and T. Vlachos, Hypersurfaces of
$E^{n+1}$ satisfying${\Delta}x$ = Ax + B, J. Austral. Math. Soc. Ser. A 53 (1992), no. 3, 377-384. https://doi.org/10.1017/S1446788700036545 -
S. M. B. Kashani, On some
$L_{1}$ -finite type (hyper)surfaces in$\mathbb{R}^{n+1}$ , Bull. Korean Math. Soc. 46 (2009), no. 1, 35-43. https://doi.org/10.4134/BKMS.2009.46.1.035 - U. J. J. Leverrier, Sur les variations seculaires des elements elliptiques des sept plan'etes principales, J. de Math. s.1 5 (1840), 220-254.
-
P. Lucas and H. F. Ramirez-Ospina, Hypersurfaces in the Lorentz-Minkowski space satisfying
$L_k{\Psi}\;=\;A{\Psi}+b$ , Geom. Dedicata 153 (2011), 151-175. https://doi.org/10.1007/s10711-010-9562-z -
P. Lucas and H. F. Ramirez-Ospina, Hypersurfaces in non-flat Lorentzian space forms satisfying
$L_k{\Psi}\;=\;A{\Psi}+b$ , Taiwanese J. Math. 16 (2012), no. 3, 1173-1203. https://doi.org/10.11650/twjm/1500406685 - P. Lucas and H. F. Ramirez-Ospina, Hypersurfaces in pseudo-Euclidean spaces satisfying a linear condition on the linearized operator of a higher order mean curvature, Differential Geom. Appl. 31 (2013), no. 2, 175-189. https://doi.org/10.1016/j.difgeo.2013.01.002
- P. Lucas and H. F. Ramirez-Ospina, Hypersurfaces in non-flat pseudo-Riemannian space forms satisfying a linear condition in the linearized operator of a higher order mean curvature, Taiwanese J. Math. 17 (2013), no. 1, 15-45. https://doi.org/10.11650/tjm.17.2013.1738
- M. A. Magid, Lorentzian isoparametric hypersurfaces, Pacific J. Math. 118 (1985), no. 1, 165-197. https://doi.org/10.2140/pjm.1985.118.165
-
A. Mohammadpouri and S. M. B. Kashani, On some
$L_{k}$ -finite-type Euclidean hypersurfaces, ISRN Geometry 2012 (2012), article ID 591296, 23 pages. - H. Munzner, Isoparametrische hyperflachen in spharen. I and II, Math. Ann. 251 (1980), no. 1, 57-71 https://doi.org/10.1007/BF01420281
- H. Munzner, Isoparametrische hyperflachen in spharen. I and II, Math. Ann. 256 (1981), no. 2, 215-232. https://doi.org/10.1007/BF01450799
- B. O'Neill, Semi-Riemannian Geometry With Applications to Relativity, Academic Press, New York London, 1983.
-
J. Park, Hypersurfaces satisfying the equation
${\Delta}x$ = Rx+ b, Proc. Amer. Math. Soc. 120 (1994), no. 1, 317-328. https://doi.org/10.1090/S0002-9939-1994-1189750-7 - R. Reilly, Variational properties of functions of the mean curvatures for hypersurfaces in space forms, J. Differential Geom. 8 (1973), 465-477. https://doi.org/10.4310/jdg/1214431802