DOI QR코드

DOI QR Code

고속도로 돌발상황 검지를 위한 삼연속검지기 단순화 해법의 통계적 적합성 검정

A Statistical Fitness Test of Newell's 3-detector Simplification Method for Unexpected Incident Detection in the Expressway Traffic Flow

  • 투고 : 2014.12.03
  • 심사 : 2016.02.25
  • 발행 : 2016.04.30

초록

본 연구는 Daganzo가 돌발상황 검지를 위해 1997년에 제안한 삼연속 검지기 단순화 해법을 통계적 모형으로 구현하고 이에 대한 통계적 적합성 검증을 목적으로 한다. 본 연구는 삼연속 검지기 단순화 해법의 계산과정을 정리하였으며, 이를 통계 프로그래밍을 활용해 구현하였다. 먼저 진출입부가 존재하지 않는 고속도로 본선의 검지기 자료를 활용하여 본 해법을 적용하였다. 그리고 삼연속 검지기 단순화 해법의 통계적 검정을 위해 충격파에 의한 교통량의 동적 변화를 반영하는 30초 단위 누적교통량을 돌발상황 교통류와 정상 교통류 각각에 대해 추정하고, 실측 누적교통량과의 오차를 통계적으로 비교하였다. 오차검정 결과 돌발상황 검지기법을 통한 누적교통량 추정치는 통계적으로 실측치와 적합성이 높게 나타났으며, 오차 값의 유의성은 사고로 인한 돌발상황 교통류가 정상 교통류에 비해 분산 및 평균이 이질적인 것으로 나타났다. 본 연구는 기존 Newell, Daganzo의 단순화 교통류 모형의 이론적 연구를 돌발상황 검지로 응용 발전시킨 연구이며, 나아가 다양한 도로조건과 돌발상황 유형에서의 실험을 통한 모형 개선을 향후 과제로 한다.

The objective of this study is to actualize a statistical model of the 3-detector simplification model, which was proposed to detect outbreak situations by Daganzo in 1997 and to verify the statistical appropriacy thereof. This study presents the calculation process of the 3-detector simplification model and realizes the process using a statistics program. Firstly, the model was applied using data on detector of the main highways on which there is no entrances or exits. Moreover, in order to statistically verify the 3-detector simplification model, accumulative traffics for 30 seconds period, which reflects the dynamic changes of traffics due to shock wave, were estimated for outbreak traffics and steady flow, and the error of acquired data was statistically compared with that of the actual accumulative traffics. As a result, the error ratio between steady and incident cumulative flows has reached its maximum after 2-3 hours from an accident. Moreover, the incident traffic flows by accidents and the stade flows are heterogeneous in terms of their dispersion and means.

키워드

참고문헌

  1. Ahmed F., Hawas Y. E. (2012), A Threshold-Based Real Time Incident Detection Systems for Urban Traffic Networks, Procedia - Social and Behavioral Sciences 48, 1713-1722. https://doi.org/10.1016/j.sbspro.2012.06.1146
  2. Daganzo C. F. (1997), Fundamentals of Transportation and Traffic Operations, Pergamon, 106-125.
  3. Hojati A. T., Ferreira L., Washington S., Charles P., Shobeirinejad A. (2014), Modelling Total Duration of Traffic Incidents Including Incident Detection and Recovery Time, Accident Analysis and Prevention 71, 296-305. https://doi.org/10.1016/j.aap.2014.06.006
  4. Kinoshita A., Takasu A., Adachi J. (2015), Real-time Traffic Incident Detection Using a Probabilistic Topic Model, Information Systems 54, 169-188. https://doi.org/10.1016/j.is.2015.07.002
  5. Knoop V. L., Hoogendoorn S. P., van Zuylen H. J. (2008), Capacity Reduction at Incidents: Empirical Data Collected From a Helicopter, Transportation Research Record: Journal of the Transportation Research Board, 2071, 19-5. https://doi.org/10.3141/2071-03
  6. Lu J., Chen S., Wang W., van Zuylen H. (2012), A Hybrid Model of Partial Least Squares and Neural Network for Traffic Incident Detection, Expert Systems With Applications 39 , 4775-4784. https://doi.org/10.1016/j.eswa.2011.09.158
  7. Newell G. F. (1993), A Simplified Theory of Kinematic Waves in Highway Traffic, Part I. General Theory, Transportation Research Part B 27(4), 281-287. https://doi.org/10.1016/0191-2615(93)90038-C
  8. Sinha P., Mohammed Hadi P. E., Amy Wang E. I. (2007), Modeling Reductions in Freeway Capacity due to Incidents in Microscopic Simulation Models, In Proceedings of 86th Annual Meeting of the Transportation Research Board, Washington D.C.
  9. Willersrud A., Blanke M., Imsland L. (2015) Incident Detection and Isolation in Drilling Using Analytical Redundancy Relations, Control Engineering Practice 41, 1-12. https://doi.org/10.1016/j.conengprac.2015.03.010