초록
본 논문은 급가속, 급 감속, 급제동, 급출발, 그리고 과속 등과 같은 여러 운행 이벤트 데이터는 운전자의 운행습관과 운전자의 사고위험성을 예측 또는 분석하는데 중요한 정보를 제공한다. 일반적인 자료의 분포는 정규분포, 로그정규분포, 감마분포 등을 이용하지만 운전자 운행습관을 나타내는 자료에서 사고위험성을 추정 할 수 있는 극단적인 부분에서는 언급한 분포로 적합하지 않은 경우가 발생한다. 특히 왜도가 발생하여 정규분포에 적합하지 않은 영역이 생겨난다. 본 논문에서는 이 영역에서 적합한 분포 함수와 사고를 유발하는 위험군을 분리 할 수 있고 운전자 운행 시 사전경고로 사고율을 줄 일수 있는 임계점을 분포함수의 quantile값과 군집분석 결과와 비교하여 제시하였다.
Driving Event Data such as the rapid acceleration, the rapid deceleration, the sudden braking, and the sudden departure, and over speeding provide important information to predict or analyze the driving habits and accident risk of a driver. Most of the data that represent the driver's driving habits generally fit to the parametric distribution, whereas extreme parts of the data to estimate the accident risk of a driver may not. This paper presents an empirical distribution that is divided into two regions, one is from the normal distribution, and the other is from the general pareto distribution for the driving habits of a driver.