DOI QR코드

DOI QR Code

Canonical correlation analysis based fault diagnosis method for structural monitoring sensor networks

  • Huang, Hai-Bin (School of Civil Engineering, Dalian University of Technology) ;
  • Yi, Ting-Hua (School of Civil Engineering, Dalian University of Technology) ;
  • Li, Hong-Nan (School of Civil Engineering, Dalian University of Technology)
  • Received : 2015.11.30
  • Accepted : 2016.04.10
  • Published : 2016.06.25

Abstract

The health conditions of in-service civil infrastructures can be evaluated by employing structural health monitoring technology. A reliable health evaluation result depends heavily on the quality of the data collected from the structural monitoring sensor network. Hence, the problem of sensor fault diagnosis has gained considerable attention in recent years. In this paper, an innovative sensor fault diagnosis method that focuses on fault detection and isolation stages has been proposed. The dynamic or auto-regressive characteristic is firstly utilized to build a multivariable statistical model that measures the correlations of the currently collected structural responses and the future possible ones in combination with the canonical correlation analysis. Two different fault detection statistics are then defined based on the above multivariable statistical model for deciding whether a fault or failure occurred in the sensor network. After that, two corresponding fault isolation indices are deduced through the contribution analysis methodology to identify the faulty sensor. Case studies, using a benchmark structure developed for bridge health monitoring, are considered in the research and demonstrate the superiority of the new proposed sensor fault diagnosis method over the traditional principal component analysis-based and the dynamic principal component analysis-based methods.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Abdelghani, M. and Friswell, M.I. (2004), "Sensor validation for structural systems with additive sensor faults", Struct. Health Monit., 3(265), 265-275. https://doi.org/10.1177/1475921704045627
  2. Abdelghani, M. and Friswell, M.I. (2007), "Sensor validation for structural systems with multiplicative sensor faults", Mech. Syst. Signal Pr., 21(1), 270-279. https://doi.org/10.1016/j.ymssp.2005.11.001
  3. Antoine, N. and Clinar, A. (1997), "Statistical monitoring of multivariable dynamic processes with state-space models", Aiche J., 43(8), 2002-2020. https://doi.org/10.1002/aic.690430810
  4. Catbas, F.N., Gul, M. and Burkett, J.L. (2008), "Damage assessment using flexibility and flexibility-based curvature for structural health monitoring", Smart Mater. Struct., 17(1), 015024. https://doi.org/10.1088/0964-1726/17/01/015024
  5. Chen, Q., Wynne, R.J., Goulding, P. and Sandoz, D. (2000), "The application of principal component analysis and kernel density estimation to enhance process monitoring", Control Eng. Pract., 8(5), 531-543. https://doi.org/10.1016/S0967-0661(99)00191-4
  6. Chiang, L.H., Russell, E. and Braatz, R.D. (2001), Fault detection and diagnosis ininfustrial systems, Springer Verlag, London, UK.
  7. Correa, N.M., Adali, T., Li, Y.O. and Calhoun, V.D. (2010), "Canonical correlation analysis for data fusion and group inferences", IEEE Signal Proc. Mag., 27(4), 39-50. https://doi.org/10.1109/MSP.2010.936725
  8. Dessi, D. and Camerlengo, G. (2015), "Damage identification techniques via modal curvature analysis: overview and comparison", Mech. Syst. Signal Pr., 52-53, 181-205. https://doi.org/10.1016/j.ymssp.2014.05.031
  9. Erdogan, Y.S., Gul, M., Catbas, F.N. and Bakir, P.G. (2014), "Investigation of uncertainty changes in model outputs for finite-element model updating using structural health monitoring data", J. Struct. Eng.- ASCE, 140(11), 04014078. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001002
  10. Gul, M. and Catbas, F.N. (2011), "Damage assessment with ambient vibration data using a novel time series analysis methodology", J. Struct. Eng.- ASCE, 137(12), 1518-1526. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000366
  11. Hardoon, D.R., Szedmak, S. and Shawe-Taylor, J. (2003), "Canonical correlation analysis; an overview with application to learning methods", Neural Computat., 16(12), 2639-2664.
  12. Hernandez-Garcia, M.R. and Masri, S.F. (2014), "Application of statistical monitoring using latent-variable techniques for detection of faults in sensor networks", J. Intell. Mat. Syst. Str., 25(2), 121-136. https://doi.org/10.1177/1045389X13479182
  13. Huang, H., He, H., Fan, X. and Zhang, J. (2010), "Super-resolution of human face image using canonical correlation analysis", Pattern Recogn., 43(7), 2532-2543. https://doi.org/10.1016/j.patcog.2010.02.007
  14. Huang, H.B., Yi, T.H. and Li, H.N. (2015), "Sensor fault diagnosis for structural health monitoring based on statistical hypothesis test and missing variable approach", J. Aerospace Eng.-ASCE, 10.1061/(ASCE)AS.1943-5525.0000572, B4015003.
  15. Huo, L., Song, G., Nagarajaiah, S. and Li, H. (2012), "Semi-active vibration suppression of a space truss structure using a fault tolerant controller", J. Vib. Control, 18(10), 1436-1453. https://doi.org/10.1177/1077546311421514
  16. Karhunen, J., Hao, T. and Ylipaavalniemi, J. (2013), "Finding dependent and independent components from related data sets: a generalized canonical correlation analysis based method", Neurocomputing, 113(7), 153-167. https://doi.org/10.1016/j.neucom.2013.01.018
  17. Kerschen, G., De Boe, P., Golinval, J.C. and Worden, K. (2005), "Sensor validation using principal component analysis", Smart Mater. Struct., 14(1), 36-42. https://doi.org/10.1088/0964-1726/14/1/004
  18. Ku, W., Storer, R.H. and Georgakis, C. (1995), "Disturbance detection and isolation by dynamic principal component analysis", Chemometr. Intell. Lab., 30(1), 179-196. https://doi.org/10.1016/0169-7439(95)00076-3
  19. Kullaa, J. (2010), "Sensor validation using minimum mean square error estimation", Mech. Syst. Signal Pr., 24(5), 1444-1457. https://doi.org/10.1016/j.ymssp.2009.12.001
  20. Lau, C., Ghosh, K., Hassain, M.A. and Hassan, C.R. (2013), "Fault diagnosis of Tennessee Eastman process with multi-scale PCA and ANFIS", Chemometr. Intell. Lab., 120, 1-14. https://doi.org/10.1016/j.chemolab.2012.10.005
  21. Li, H.N., Yi, T.H., Ren, L., Li, D.S. and Huo, L.S. (2014), "Reviews on innovations and applications in structural health monitoring for infrastructures", Struct. Monit. Maint., 1(1), 1-45. https://doi.org/10.12989/SMM.2014.1.1.001
  22. Li, J. and Law, S.S. (2012), "Damage identification of a target substructure with moving load excitation", Mech. Syst. Signal Pr., 30(7), 78-90. https://doi.org/10.1016/j.ymssp.2012.02.002
  23. Li, J., Hao, H. and Lo, J.V. (2015), "Structural damage identification with power spectral density transmissibility: numerical and experimental studies", Smart. Struct. Syst., 15(1), 15-40. https://doi.org/10.12989/sss.2015.15.1.015
  24. Lu, Y. and Michaels, J.E. (2009), "Feature extraction and sensor fusion for ultrasonic structural health monitoring under changing environmental conditions", IEEE Sens. J., 9(11), 1462-1471. https://doi.org/10.1109/JSEN.2009.2019339
  25. Ni, Y.Q., Ye, X.W. and Ko, J.M. (2010), "Monitoring-based fatigue reliability assessment of steel bridges: analytical model and application", J. Struct. Eng.- ASCE, 136(12), 1563-1573. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000250
  26. Ni, Y.Q., Ye, X.W. and Ko, J.M. (2012), "Modeling of stress spectrum using long-term monitoring data and finite mixture distributions", J. Eng. Mech.- ASCE, 138(2), 175-183. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000313
  27. Pereira, D.A. and Serpa, A.L. (2015), "Bank of H-infinity filters for sensor fault isolation in active controlled flexible structures", Mech. Syst. Signal Pr., 60-61, 678-694. https://doi.org/10.1016/j.ymssp.2015.01.036
  28. Qin, S.J. (2003), "Statistical process monitoring: basics and beyond", J. Chemometr., 17(8-9), 480-502. https://doi.org/10.1002/cem.800
  29. Rahbari, R., Niu, J., Brownjohn, J.M.W. and Koo, K.Y. (2015), "Structural identification of humber bridge for performance prognosis", Smart. Struct. Syst., 15(3), 665-682. https://doi.org/10.12989/sss.2015.15.3.665
  30. Roy, K., Bhattacharya, B. and Ray-Chaudhuri, S. (2015), "ARX model-based damage sensitive features for structural damage localization using output-only measurements", J. Sound Vib., 349, 99-122. https://doi.org/10.1016/j.jsv.2015.03.038
  31. Sharifi, R., Kim, Y. and Langari, R. (2010), "Sensor fault isolation and detection of smart structures", Smart Mater. Struct., 19(10), 105001. https://doi.org/10.1088/0964-1726/19/10/105001
  32. Smarsly, K. and Law, K.H. (2014), "Decentralized fault detection and isolation in wireless structural health monitoring systems using analytical redundancy", Adv. Eng. Softw., 73, 1-10. https://doi.org/10.1016/j.advengsoft.2014.02.005
  33. Soman, R.N., Onoufrioua, T., Kyriakidesb, M.A., Votsisc, R.A. and Chrysostomou, C.Z. (2014), "Multi-type, multi-sensor placement optimization for structural health monitoring of long span bridges", Smart. Struct. Syst., 14(1), 55-70. https://doi.org/10.12989/sss.2014.14.1.055
  34. Sweeney, K.T., Mcloone, S.F. and Ward, T.E. (2013), "The use of ensemble empirical mode decomposition with canonical correlation analysis as a novel artifact removal technique", IEEE t. bio-med. Eng., 60(1), 97-105. https://doi.org/10.1109/TBME.2012.2225427
  35. Thanagasundram, S., Spurgeon, S. and Schlindwein, F.S. (2008), "A fault detection tool using analysis from an autoregressive model pole trajectory", J. Sound Vib., 317(3), 975-993. https://doi.org/10.1016/j.jsv.2008.03.044
  36. The Mathworks (2014), MATLAB R2014a, Natick, Massachusetts, USA, http://cn.mathworks.com.
  37. Wang, H. and Song, G. (2011), "Fault detection and fault tolerant control of a smart base isolation system with magneto-rheological damper", Smart Mater. Struct., 20(8), 298-300.
  38. Worden, K., Farrar, C.R., Haywood, J. and Todd, M. (2008), "A review of nonlinear dynamics applications to structural health monitoring", Struct. Control. Health., 15(4), 540-567. https://doi.org/10.1002/stc.215
  39. Yamaguchi, H., Matsumoto, Y. and Yoshioka, T. (2015), "Effects of local structural damage in a steel truss bridge on internal dynamic coupling and modal damping", Smart. Struct. Syst., 15(3), 523-541. https://doi.org/10.12989/sss.2015.15.3.523
  40. Yi, T.H., Li, H.N. and Gu, M. (2011), "Optimal sensor placement for structural health monitoring based on multiple optimization strategies", Struct. Des. Tall Spec. Build., 20(7), 881-900. https://doi.org/10.1002/tal.712
  41. Yi, T.H., Li, H.N. and Gu, M. (2013a), "Recent research and applications of GPS-based monitoring technology for high-rise structures", Struct. Control. Health., 20(5), 649-670. https://doi.org/10.1002/stc.1501
  42. Yi, T.H., Li, H.N. and Sun, H.M. (2013b), "Multi-stage structural damage diagnosis method based on 'energy-damage' theory", Smart. Struct. Syst., 12(3-4), 345-361. https://doi.org/10.12989/sss.2013.12.3_4.345
  43. Yi, T.H., Li, H.N. and Zhang, X.D. (2015a), "Sensor placement optimization in structural health monitoring using distributed monkey algorithm", Smart. Struct. Syst., 15(1), 191-207. https://doi.org/10.12989/sss.2015.15.1.191
  44. Yin, S., Ding, S.X., Haghani, A., Hao, H. and Zhang, P. (2012), "A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process", J. Process Contr., 22(9), 1567-1581. https://doi.org/10.1016/j.jprocont.2012.06.009

Cited by

  1. Development of sensor validation methodologies for structural health monitoring: A comprehensive review vol.109, 2017, https://doi.org/10.1016/j.measurement.2017.05.064
  2. Bayesian Combination of Weighted Principal-Component Analysis for Diagnosing Sensor Faults in Structural Monitoring Systems vol.143, pp.9, 2017, https://doi.org/10.1061/(ASCE)EM.1943-7889.0001309
  3. Thermal strain extraction methodologies for bridge structural condition assessment vol.27, pp.10, 2018, https://doi.org/10.1088/1361-665X/aad5fb
  4. New Representative Temperature for Performance Alarming of Bridge Expansion Joints through Temperature-Displacement Relationship vol.23, pp.7, 2018, https://doi.org/10.1061/(ASCE)BE.1943-5592.0001258
  5. A measuring system for determination of a cantilever beam support moment vol.19, pp.4, 2017, https://doi.org/10.12989/sss.2017.19.4.431
  6. Structural health monitoring of a newly built high-piled wharf in a harbor with fiber Bragg grating sensor technology: design and deployment vol.20, pp.2, 2017, https://doi.org/10.12989/sss.2017.20.2.163
  7. Sensor fault diagnosis for bridge monitoring system using similarity of symmetric responses vol.23, pp.3, 2019, https://doi.org/10.12989/sss.2019.23.3.279
  8. Novel Approaches for Fracture Detection in Steel Girder Bridges vol.4, pp.3, 2016, https://doi.org/10.3390/infrastructures4030042
  9. Numerical Differentiation in the Measurement Model vol.62, pp.8, 2019, https://doi.org/10.1007/s11018-019-01677-z
  10. Damage Identification in Structural Health Monitoring: A Brief Review from its Implementation to the Use of Data-Driven Applications vol.20, pp.3, 2020, https://doi.org/10.3390/s20030733
  11. Strain-Based Performance Warning Method for Bridge Main Girders under Variable Operating Conditions vol.25, pp.4, 2020, https://doi.org/10.1061/(asce)be.1943-5592.0001538
  12. Review of Bridge Structural Health Monitoring Aided by Big Data and Artificial Intelligence: From Condition Assessment to Damage Detection vol.146, pp.5, 2016, https://doi.org/10.1061/(asce)st.1943-541x.0002535
  13. Deep learning for data anomaly detection and data compression of a long‐span suspension bridge vol.35, pp.7, 2016, https://doi.org/10.1111/mice.12528
  14. Anomaly Identification of Structural Health Monitoring Data Using Dynamic Independent Component Analysis vol.34, pp.5, 2020, https://doi.org/10.1061/(asce)cp.1943-5487.0000905
  15. Accurate Correlation Modeling between Wind Speed and Bridge Girder Displacement Based on a Multi-Rate Fusion Method vol.21, pp.6, 2016, https://doi.org/10.3390/s21061967