과제정보
연구 과제 주관 기관 : National Natural Science Foundation of China
참고문헌
- Abdelghani, M. and Friswell, M.I. (2004), "Sensor validation for structural systems with additive sensor faults", Struct. Health Monit., 3(265), 265-275. https://doi.org/10.1177/1475921704045627
- Abdelghani, M. and Friswell, M.I. (2007), "Sensor validation for structural systems with multiplicative sensor faults", Mech. Syst. Signal Pr., 21(1), 270-279. https://doi.org/10.1016/j.ymssp.2005.11.001
- Antoine, N. and Clinar, A. (1997), "Statistical monitoring of multivariable dynamic processes with state-space models", Aiche J., 43(8), 2002-2020. https://doi.org/10.1002/aic.690430810
- Catbas, F.N., Gul, M. and Burkett, J.L. (2008), "Damage assessment using flexibility and flexibility-based curvature for structural health monitoring", Smart Mater. Struct., 17(1), 015024. https://doi.org/10.1088/0964-1726/17/01/015024
- Chen, Q., Wynne, R.J., Goulding, P. and Sandoz, D. (2000), "The application of principal component analysis and kernel density estimation to enhance process monitoring", Control Eng. Pract., 8(5), 531-543. https://doi.org/10.1016/S0967-0661(99)00191-4
- Chiang, L.H., Russell, E. and Braatz, R.D. (2001), Fault detection and diagnosis ininfustrial systems, Springer Verlag, London, UK.
- Correa, N.M., Adali, T., Li, Y.O. and Calhoun, V.D. (2010), "Canonical correlation analysis for data fusion and group inferences", IEEE Signal Proc. Mag., 27(4), 39-50. https://doi.org/10.1109/MSP.2010.936725
- Dessi, D. and Camerlengo, G. (2015), "Damage identification techniques via modal curvature analysis: overview and comparison", Mech. Syst. Signal Pr., 52-53, 181-205. https://doi.org/10.1016/j.ymssp.2014.05.031
- Erdogan, Y.S., Gul, M., Catbas, F.N. and Bakir, P.G. (2014), "Investigation of uncertainty changes in model outputs for finite-element model updating using structural health monitoring data", J. Struct. Eng.- ASCE, 140(11), 04014078. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001002
- Gul, M. and Catbas, F.N. (2011), "Damage assessment with ambient vibration data using a novel time series analysis methodology", J. Struct. Eng.- ASCE, 137(12), 1518-1526. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000366
- Hardoon, D.R., Szedmak, S. and Shawe-Taylor, J. (2003), "Canonical correlation analysis; an overview with application to learning methods", Neural Computat., 16(12), 2639-2664.
- Hernandez-Garcia, M.R. and Masri, S.F. (2014), "Application of statistical monitoring using latent-variable techniques for detection of faults in sensor networks", J. Intell. Mat. Syst. Str., 25(2), 121-136. https://doi.org/10.1177/1045389X13479182
- Huang, H., He, H., Fan, X. and Zhang, J. (2010), "Super-resolution of human face image using canonical correlation analysis", Pattern Recogn., 43(7), 2532-2543. https://doi.org/10.1016/j.patcog.2010.02.007
- Huang, H.B., Yi, T.H. and Li, H.N. (2015), "Sensor fault diagnosis for structural health monitoring based on statistical hypothesis test and missing variable approach", J. Aerospace Eng.-ASCE, 10.1061/(ASCE)AS.1943-5525.0000572, B4015003.
- Huo, L., Song, G., Nagarajaiah, S. and Li, H. (2012), "Semi-active vibration suppression of a space truss structure using a fault tolerant controller", J. Vib. Control, 18(10), 1436-1453. https://doi.org/10.1177/1077546311421514
- Karhunen, J., Hao, T. and Ylipaavalniemi, J. (2013), "Finding dependent and independent components from related data sets: a generalized canonical correlation analysis based method", Neurocomputing, 113(7), 153-167. https://doi.org/10.1016/j.neucom.2013.01.018
- Kerschen, G., De Boe, P., Golinval, J.C. and Worden, K. (2005), "Sensor validation using principal component analysis", Smart Mater. Struct., 14(1), 36-42. https://doi.org/10.1088/0964-1726/14/1/004
- Ku, W., Storer, R.H. and Georgakis, C. (1995), "Disturbance detection and isolation by dynamic principal component analysis", Chemometr. Intell. Lab., 30(1), 179-196. https://doi.org/10.1016/0169-7439(95)00076-3
- Kullaa, J. (2010), "Sensor validation using minimum mean square error estimation", Mech. Syst. Signal Pr., 24(5), 1444-1457. https://doi.org/10.1016/j.ymssp.2009.12.001
- Lau, C., Ghosh, K., Hassain, M.A. and Hassan, C.R. (2013), "Fault diagnosis of Tennessee Eastman process with multi-scale PCA and ANFIS", Chemometr. Intell. Lab., 120, 1-14. https://doi.org/10.1016/j.chemolab.2012.10.005
- Li, H.N., Yi, T.H., Ren, L., Li, D.S. and Huo, L.S. (2014), "Reviews on innovations and applications in structural health monitoring for infrastructures", Struct. Monit. Maint., 1(1), 1-45. https://doi.org/10.12989/SMM.2014.1.1.001
- Li, J. and Law, S.S. (2012), "Damage identification of a target substructure with moving load excitation", Mech. Syst. Signal Pr., 30(7), 78-90. https://doi.org/10.1016/j.ymssp.2012.02.002
- Li, J., Hao, H. and Lo, J.V. (2015), "Structural damage identification with power spectral density transmissibility: numerical and experimental studies", Smart. Struct. Syst., 15(1), 15-40. https://doi.org/10.12989/sss.2015.15.1.015
- Lu, Y. and Michaels, J.E. (2009), "Feature extraction and sensor fusion for ultrasonic structural health monitoring under changing environmental conditions", IEEE Sens. J., 9(11), 1462-1471. https://doi.org/10.1109/JSEN.2009.2019339
- Ni, Y.Q., Ye, X.W. and Ko, J.M. (2010), "Monitoring-based fatigue reliability assessment of steel bridges: analytical model and application", J. Struct. Eng.- ASCE, 136(12), 1563-1573. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000250
- Ni, Y.Q., Ye, X.W. and Ko, J.M. (2012), "Modeling of stress spectrum using long-term monitoring data and finite mixture distributions", J. Eng. Mech.- ASCE, 138(2), 175-183. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000313
- Pereira, D.A. and Serpa, A.L. (2015), "Bank of H-infinity filters for sensor fault isolation in active controlled flexible structures", Mech. Syst. Signal Pr., 60-61, 678-694. https://doi.org/10.1016/j.ymssp.2015.01.036
- Qin, S.J. (2003), "Statistical process monitoring: basics and beyond", J. Chemometr., 17(8-9), 480-502. https://doi.org/10.1002/cem.800
- Rahbari, R., Niu, J., Brownjohn, J.M.W. and Koo, K.Y. (2015), "Structural identification of humber bridge for performance prognosis", Smart. Struct. Syst., 15(3), 665-682. https://doi.org/10.12989/sss.2015.15.3.665
- Roy, K., Bhattacharya, B. and Ray-Chaudhuri, S. (2015), "ARX model-based damage sensitive features for structural damage localization using output-only measurements", J. Sound Vib., 349, 99-122. https://doi.org/10.1016/j.jsv.2015.03.038
- Sharifi, R., Kim, Y. and Langari, R. (2010), "Sensor fault isolation and detection of smart structures", Smart Mater. Struct., 19(10), 105001. https://doi.org/10.1088/0964-1726/19/10/105001
- Smarsly, K. and Law, K.H. (2014), "Decentralized fault detection and isolation in wireless structural health monitoring systems using analytical redundancy", Adv. Eng. Softw., 73, 1-10. https://doi.org/10.1016/j.advengsoft.2014.02.005
- Soman, R.N., Onoufrioua, T., Kyriakidesb, M.A., Votsisc, R.A. and Chrysostomou, C.Z. (2014), "Multi-type, multi-sensor placement optimization for structural health monitoring of long span bridges", Smart. Struct. Syst., 14(1), 55-70. https://doi.org/10.12989/sss.2014.14.1.055
- Sweeney, K.T., Mcloone, S.F. and Ward, T.E. (2013), "The use of ensemble empirical mode decomposition with canonical correlation analysis as a novel artifact removal technique", IEEE t. bio-med. Eng., 60(1), 97-105. https://doi.org/10.1109/TBME.2012.2225427
- Thanagasundram, S., Spurgeon, S. and Schlindwein, F.S. (2008), "A fault detection tool using analysis from an autoregressive model pole trajectory", J. Sound Vib., 317(3), 975-993. https://doi.org/10.1016/j.jsv.2008.03.044
- The Mathworks (2014), MATLAB R2014a, Natick, Massachusetts, USA, http://cn.mathworks.com.
- Wang, H. and Song, G. (2011), "Fault detection and fault tolerant control of a smart base isolation system with magneto-rheological damper", Smart Mater. Struct., 20(8), 298-300.
- Worden, K., Farrar, C.R., Haywood, J. and Todd, M. (2008), "A review of nonlinear dynamics applications to structural health monitoring", Struct. Control. Health., 15(4), 540-567. https://doi.org/10.1002/stc.215
- Yamaguchi, H., Matsumoto, Y. and Yoshioka, T. (2015), "Effects of local structural damage in a steel truss bridge on internal dynamic coupling and modal damping", Smart. Struct. Syst., 15(3), 523-541. https://doi.org/10.12989/sss.2015.15.3.523
- Yi, T.H., Li, H.N. and Gu, M. (2011), "Optimal sensor placement for structural health monitoring based on multiple optimization strategies", Struct. Des. Tall Spec. Build., 20(7), 881-900. https://doi.org/10.1002/tal.712
- Yi, T.H., Li, H.N. and Gu, M. (2013a), "Recent research and applications of GPS-based monitoring technology for high-rise structures", Struct. Control. Health., 20(5), 649-670. https://doi.org/10.1002/stc.1501
- Yi, T.H., Li, H.N. and Sun, H.M. (2013b), "Multi-stage structural damage diagnosis method based on 'energy-damage' theory", Smart. Struct. Syst., 12(3-4), 345-361. https://doi.org/10.12989/sss.2013.12.3_4.345
- Yi, T.H., Li, H.N. and Zhang, X.D. (2015a), "Sensor placement optimization in structural health monitoring using distributed monkey algorithm", Smart. Struct. Syst., 15(1), 191-207. https://doi.org/10.12989/sss.2015.15.1.191
- Yin, S., Ding, S.X., Haghani, A., Hao, H. and Zhang, P. (2012), "A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process", J. Process Contr., 22(9), 1567-1581. https://doi.org/10.1016/j.jprocont.2012.06.009
피인용 문헌
- Development of sensor validation methodologies for structural health monitoring: A comprehensive review vol.109, 2017, https://doi.org/10.1016/j.measurement.2017.05.064
- Bayesian Combination of Weighted Principal-Component Analysis for Diagnosing Sensor Faults in Structural Monitoring Systems vol.143, pp.9, 2017, https://doi.org/10.1061/(ASCE)EM.1943-7889.0001309
- Thermal strain extraction methodologies for bridge structural condition assessment vol.27, pp.10, 2018, https://doi.org/10.1088/1361-665X/aad5fb
- New Representative Temperature for Performance Alarming of Bridge Expansion Joints through Temperature-Displacement Relationship vol.23, pp.7, 2018, https://doi.org/10.1061/(ASCE)BE.1943-5592.0001258
- A measuring system for determination of a cantilever beam support moment vol.19, pp.4, 2017, https://doi.org/10.12989/sss.2017.19.4.431
- Structural health monitoring of a newly built high-piled wharf in a harbor with fiber Bragg grating sensor technology: design and deployment vol.20, pp.2, 2017, https://doi.org/10.12989/sss.2017.20.2.163
- Sensor fault diagnosis for bridge monitoring system using similarity of symmetric responses vol.23, pp.3, 2019, https://doi.org/10.12989/sss.2019.23.3.279
- Novel Approaches for Fracture Detection in Steel Girder Bridges vol.4, pp.3, 2016, https://doi.org/10.3390/infrastructures4030042
- Numerical Differentiation in the Measurement Model vol.62, pp.8, 2019, https://doi.org/10.1007/s11018-019-01677-z
- Damage Identification in Structural Health Monitoring: A Brief Review from its Implementation to the Use of Data-Driven Applications vol.20, pp.3, 2020, https://doi.org/10.3390/s20030733
- Strain-Based Performance Warning Method for Bridge Main Girders under Variable Operating Conditions vol.25, pp.4, 2020, https://doi.org/10.1061/(asce)be.1943-5592.0001538
- Review of Bridge Structural Health Monitoring Aided by Big Data and Artificial Intelligence: From Condition Assessment to Damage Detection vol.146, pp.5, 2016, https://doi.org/10.1061/(asce)st.1943-541x.0002535
- Deep learning for data anomaly detection and data compression of a long‐span suspension bridge vol.35, pp.7, 2016, https://doi.org/10.1111/mice.12528
- Anomaly Identification of Structural Health Monitoring Data Using Dynamic Independent Component Analysis vol.34, pp.5, 2020, https://doi.org/10.1061/(asce)cp.1943-5487.0000905
- Accurate Correlation Modeling between Wind Speed and Bridge Girder Displacement Based on a Multi-Rate Fusion Method vol.21, pp.6, 2016, https://doi.org/10.3390/s21061967