참고문헌
- Allemang, R.J. (2003), "The modal assurance criterion - Twenty years of use and abuse", J. Sound Vib., 37(8):,14-23.
- Brincker, R., Zhang, L.M. and Andersen, P. (2000), "Modal identification from ambient responses using frequency domain decomposition", Imac-Xviii: A Conference on Structural Dynamics, Vols 1 and 2, Proceedings, 4062, 625-630.
- Brockwell, P. J. and Davis, R.A. (2002), Introduction to time series and forecasting, Springer. New York.
- Hearn, G. and Testa, R. B. (1991), "Modal-analysis for damage detection in structures", J. Struct. Eng. - ASCE, 117(10), 3042-3063. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:10(3042)
- Juang, J.N. and Pappa, R.S. (1985), "An eigensystem realization-algorithm for modal parameter-identification and model-reduction", J. Guid. Control Dynam., 8(5), 620-627. https://doi.org/10.2514/3.20031
- Lee, H., Grosse, R., Ranganath, R. and Ng, A.Y. (2011), "Unsupervised learning of hierarchical representations with convolutional deep belief networks", Communications of the Acm, 54(10), 95-103. https://doi.org/10.1145/2001269.2001295
- McKenna, F. (2011), "OpenSees: A framework for earthquake engineering simulation", Comput. Sci. Eng., 13(4), 58-66.
- Mohanty, P. and Rixen, D.J. (2004), "A modified Ibrahim time domain algorithm for operational modal analysis including harmonic excitation", J. Sound Vib., 275(1-2), 375-390. https://doi.org/10.1016/j.jsv.2003.06.030
- Neumaier, A. and Schneider, T. (2001), "Estimation of parameters and eigenmodes of multivariate autoregressive models", Acm T. Math. Software, 27(1), 27-57. https://doi.org/10.1145/382043.382304
- Omenzetter, P., Brownjohn, J.M.W. and Moyo, P. (2003), "Application of time series analysis for bridge health monitoring", Struct. Health Monit. Intell. Infrast., 1-2, 1073-1080.
- Priestley, M. B. (1981), Spectral analysis and time series, Academic Press. London ; New York.
- Torbol, M., Kim, S. and Shinozuka, M. (2013), "Long term monitoring of a cable stayed bridge using DuraMote", Smart Struct. Syst., 11(5), 453-476. https://doi.org/10.12989/sss.2013.11.5.453
- Vu, V.H., Thomas, M., Lakis, A.A. and Marcouiller, L. (2011), "Operational modal analysis by updating autoregressive model", Mech. Syst. Signal Pr., 25(3), 1028-1044. https://doi.org/10.1016/j.ymssp.2010.08.014
- Ye, X.W., Ni, Y.Q., Wai, T.T., Wong, K.Y., Zhang, X.M. and Xu, F. (2013), "A vision-based system for dynamic displacement measurement of long-span bridges: algorithm and verification", Smart Struct. Syst., 12(3-4), 363-379. https://doi.org/10.12989/sss.2013.12.3_4.363
- Ye, X. W., Ni, Y.Q., Wong, K.Y. and Ko, J.M. (2012), "Statistical analysis of stress spectra for fatigue life assessment of steel bridges with structural health monitoring data", Eng. Struct., 45, 166-176. https://doi.org/10.1016/j.engstruct.2012.06.016
- Yun, C.B. and Bahng, E.Y. (2000), "Substructural identification using neural networks", Comput. Struct., 77(1), 41-52. https://doi.org/10.1016/S0045-7949(99)00199-6
- Yun, Y.A.N. (2004), "Design of structure optimization with APDL", J. East China Jiaotong Univ., 21(4), 52-55.
피인용 문헌
- Vision-Based Natural Frequency Identification Using Laser Speckle Imaging and Parallel Computing vol.33, pp.1, 2018, https://doi.org/10.1111/mice.12312
- A sensor fault detection strategy for structural health monitoring systems vol.20, pp.1, 2016, https://doi.org/10.12989/sss.2017.20.1.043
- A Nonparametric Method for Identifying Structural Damage in Bridges Based on the Best-Fit Auto-Regressive Models vol.20, pp.10, 2016, https://doi.org/10.1142/s0219455420420122
- Swarm-based hybridizations of neural network for predicting the concrete strength vol.26, pp.2, 2016, https://doi.org/10.12989/sss.2020.26.2.241
- Modal parameter identification of a multiple-span post-tensioned concrete bridge using hybrid vibration testing data vol.219, pp.None, 2016, https://doi.org/10.1016/j.engstruct.2020.110953