Acknowledgement
Supported by : National Research Foundation of Korea (NRF)
References
- Fabricio, G.B., Danilo, E.B., Vinicius, A.D.A. and Jose, A.C.U. (2014), "An experimental study on the effect of temperature on piezoelectric sensors for impedance-based structural health monitoring", Sensors, 14, 1208-1227. https://doi.org/10.3390/s140101208
- Fasel, T.R., Sohn, H., Park, G. and Farrar, C.R. (2005), "Active sensing using impedance-based ARX models and extreme value statistics for damage detection", Earthq. Eng. Struct. D., 34(7), 763-785. https://doi.org/10.1002/eqe.454
- Ho, D.D., Lee, P.Y., Nguyen, K.D., Hong, D.S., Lee, S.Y., Kim, J.T., Shin, S.W., Yun, C.B. and Shinozuka, M. (2012), "Solar-powered multi-scale sensor node on imote2 platform for hybrid SHM in cable-stayed bridge", Smart Struct. Syst., 9(2), 145-164. https://doi.org/10.12989/sss.2012.9.2.145
- Hong, D.S. (2011), Vibration-impedance-based hybrid structural health monitoring and temperature effect assessment in girder's structures, PhD Thesis, Department of Ocean Engineering, Pukyong National University, Korea.
- Huynh, T.C. and Kim, J.T. (2014), "Impedance-based cable force monitoring in tendon-anchorage using portable PZT-interface technique", Math. Probl. Eng., Article ID 784731, 1-11.
- Huynh, T.C., Park, Y.H., Park, J.H. and Kim, J.T. (2015a), "Feasibility verification of mountable PZT-interface for impedance monitoring in tendon-anchorage", J. Shock Vib., 2015, 1-11.
- Huynh, T.C., Lee, K.S. and Kim, J.T. (2015b), "Local dynamic characteristics of PZT impedance interface on tendon anchorage under prestress force variation", Smart Struct. Syst., 15(2), 375-393. https://doi.org/10.12989/sss.2015.15.2.375
- Huynh, T.C., Park, Y.H., Park, J.H., Hong, D.S., and Kim, J.T. (2015c), "Effect of temperature variation on vibration monitoring of prestressed concrete structures", J. Shock Vib., 2015, 1-9.
- Huynh, T.C., Park, J.H. and Kim, J.T. (2016), "Structural identification of cable-stayed bridge under back-to-back typhoons by wireless vibration monitoring", Measurement, 10.1016/j.measurement.2016.03.032.
- Huynh, T.C. and Kim, J.T. (2016), "FOS-based prestress force monitoring and temperature effect estimation in unbonded tendons of PSC girders", J. Aerospace Eng., 10.1061/(ASCE)AS.1943-5525.0000608, B4016005.
- Ko, J.M. and Ni, Y.Q. (2005), "Technology developments in structural health monitoring of large-scale bridges", Eng. Struct., 27, 1715-1725. https://doi.org/10.1016/j.engstruct.2005.02.021
- Koo, K.Y, Park, S.H., Lee, J.J. and Yun, C.B. (2009), "Automated impedance-based structural health monitoring incorporating effective frequency shift for compensating temperature effects", J. Intel. Mat. Syst. Str., 20, 367-377. https://doi.org/10.1177/1045389X08088664
- Kim, J.T., Huynh, T.C. and Lee, S.Y. (2014), "Wireless structural health monitoring of stay cables under two consecutive typhoons", Struct. Monit. Maint., 1(1), 47-67. https://doi.org/10.12989/SMM.2014.1.1.047
- Kim, J.T., Nguyen, K.D. and Huynh, T.C. (2013), "Wireless health monitoring of stay cable using piezoelectric strain response and smart skin technique", Smart Struct. Syst., 12(3-4), 381-379. https://doi.org/10.12989/sss.2013.12.3_4.381
- Kim, J.T., Na, W.B., Park, J.H. and Hong, D.S. (2006), "Hybrid health monitoring of structural joints using modal parameters and EMI signatures", Proceeding of SPIE, San Diego, USA.
- Kim, J.T., Park, J.H., Hong, D.S. and Park, W.S. (2010), "Hybrid health monitoring of prestressed concrete girder bridges by sequential vibration-impedance approaches", Eng. Struct., 32, 115-128. https://doi.org/10.1016/j.engstruct.2009.08.021
- Kim, J.T., Yun, C.B. and Yi, J.H. (2003), "Temperature effects on frequency-based damage detection in plate-girder bridges", J. KSCE, 7(6), 725-733.
- Li, H.N, Yi, T.H., Ren L., Li, D.S. and Huo, L.S. (2014), "Review on innovations and applications in structural health monitoring for infrastructures", Struct. Monit. Maint., 1(1), 1-45. https://doi.org/10.12989/SMM.2014.1.1.001
- Liang, C., Sun, F.P. and Rogers, C.A. (1994), "Coupled electro-mechanical analysis of adaptive material - Determination of the actuator power consumption and system energy transfer", J. Intel. Mat. Syst. Str., 5, 12-20. https://doi.org/10.1177/1045389X9400500102
- Lynch, J.P., Wang, W., Loh, K.J., Yi, J.H. and Yun, C.B. (2006), "Performance monitoring of the Geumdang Bridge using a dense network of high-resolution wireless sensors", Smart Mater. Struct., 15(6), 1561-1575. https://doi.org/10.1088/0964-1726/15/6/008
- Mascarenas, D.L., Todd, M.D., Park, G. and Farrar, C.R. (2007), "Development of an impedance-based wireless sensor node for structural health monitoring", Smart Mater. Struct., 16(6), 2137-2145. https://doi.org/10.1088/0964-1726/16/6/016
- Min, J.Y. (2012), Structural health monitoring for civil infrastructure using wireless impedance sensor nodes and smart assessment techniques, PhD Thesis, Department of Civil and Environmental Engineering, KAIST, Korea.
- Nguyen, K.D. and Kim, J.T. (2012), "Smart PZT-interface for wireless impedance-based prestress-loss monitoring in tendon-anchorage connection", Smart Struct. Syst., 9(6), 489-504. https://doi.org/10.12989/sss.2012.9.6.489
- Park, J.H., Kim, J.T., Hong, D.S., Mascarenas, D. and Lynch, J.P. (2010), "Autonomous smart sensor nodes for global and local damage detection of prestressed concrete bridges based on accelerations and impedance measurements", Smart Struct. Syst., 6(5-6), 711-730. https://doi.org/10.12989/sss.2010.6.5_6.711
- Park, J.H., Huynh, T.C. and Kim, J.T. (2015), "Temperature effect on wireless impedance monitoring in tendon anchorage of prestressed concrete girder", Smart Struct. Syst., 15(4), 1159-1175. https://doi.org/10.12989/sss.2015.15.4.1159
- Park, G., Kabeya, K., Cudney, H. and Inman, D. (1999), "Impedance-based structural health monitoring for temperature varying applications", JSME Int. J. Ser. A Solid Mech. Mater. Eng., 42, 249-258.
- Rice, J.A., Mechitov, K., Sim, S.H., Nagayama, T., Jang, S., Kim, R., Spencer, Jr, B.F., Agha, G. and Fujino, Y. (2010), "Flexible smart sensor framework for autonomous structural health monitoring", Smart Struct. Syst., 6(5-6), 423-438. https://doi.org/10.12989/sss.2010.6.5_6.423
- Sepehry, N., Shamshirsaz, M. and Abdollahi, F. (2011), "Temperature variation effect compensation in impedance-based structural health monitoring using neural networks", J. Intel. Mat. Syst. Str., 20(10), 1-8.
- Siebel, T. and Lilov, M. (2013), "Experimental investigation on improving electromechanical impedance based damage detection by temperature compensation", Key Eng. Mater., 569-570, 1132-1139. https://doi.org/10.4028/www.scientific.net/KEM.569-570.1132
- Sohn, H. (2007), "Effects of environmental and operational variability on structural health monitoring", Philos. T. R. Soc. A, 365, 539-560. https://doi.org/10.1098/rsta.2006.1935
- Sun, F.P., Chaudhry Z., Liang, C. and Rogers C.A. (1995), "Truss structure integrity identification using PZT sensor-actuator", J. Intel. Mat. Syst. Str., 6, 134-139. https://doi.org/10.1177/1045389X9500600117
- Yun, C., Cho, S., Park, H., Min, J. and Park, J. (2013), "Smart wireless sensing and assessment for civil infrastructure", Struct. Infrastruct. Eng. Maint. Manag. Life-Cycle Design Perform., 10(4), 534-550.
- Zagrai, A.N. and Giurgiutiu, V. (2001), "Electro-mechanical impedance method for crack detection in thin plates", J. Intel. Mat. Syst. Str., 12, 709-718. https://doi.org/10.1177/104538901320560355
Cited by
- Quantification of temperature effect on impedance monitoring via PZT interface for prestressed tendon anchorage vol.26, pp.12, 2017, https://doi.org/10.1088/1361-665X/aa931b
- RBFN-based temperature compensation method for impedance monitoring in prestressed tendon anchorage vol.25, pp.6, 2018, https://doi.org/10.1002/stc.2173
- Hybrid bolt-loosening detection in wind turbine tower structures by vibration and impedance responses vol.24, pp.4, 2016, https://doi.org/10.12989/was.2017.24.4.385
- Quantitative damage identification in tendon anchorage via PZT interface-based impedance monitoring technique vol.20, pp.2, 2016, https://doi.org/10.12989/sss.2017.20.2.181
- Experimental investigation of magnetic-mount PZT-interface for impedance-based damage detection in steel girder connection vol.4, pp.3, 2017, https://doi.org/10.12989/smm.2017.4.3.237
- Advances and challenges in impedance-based structural health monitoring vol.4, pp.4, 2016, https://doi.org/10.12989/smm.2017.4.4.301
- PCA-based filtering of temperature effect on impedance monitoring in prestressed tendon anchorage vol.22, pp.1, 2018, https://doi.org/10.12989/sss.2018.22.1.057
- Preload Monitoring in Bolted Connection Using Piezoelectric-Based Smart Interface vol.18, pp.9, 2016, https://doi.org/10.3390/s18092766
- Advances in the Structural Health Monitoring of Bridges Using Piezoelectric Transducers vol.18, pp.12, 2016, https://doi.org/10.3390/s18124312
- Quantitative loosening detection of threaded fasteners using vision-based deep learning and geometric imaging theory vol.133, pp.None, 2022, https://doi.org/10.1016/j.autcon.2021.104009
- A comprehensive review of loosening detection methods for threaded fasteners vol.168, pp.None, 2016, https://doi.org/10.1016/j.ymssp.2021.108652