References
- Rana, S. and Fangueiro, R., Fibrous and Textile Materials for Composite Applications, Springer Science+Business Media, Singapore, 2016.
- Compston, P., Cantwell, W.J., Jones, C., and Jones, N., "Impact Perforation Resistance and Fracture Mechanisms of a Thermoplastic Based Fiber-Metal Laminate," Journal of Materials Science Letters, Vol. 20, No. 7, 1996, pp. 163-168.
- Vlot, A., "Impact Loading on Fibre Metal Laminates," International Journal of Impact Engineering, Vol. 18, No. 3, 1996, pp. 291-307. https://doi.org/10.1016/0734-743X(96)89050-6
- Vlot, A., Kroon, E., and La Rocca, G., "Impact Response of Fiber Metal Laminates," Key Engineering Materials, Vol. 141, 1997, pp. 235-276.
- Wu, G., Yang, J.M., and Hahn, H.T., "The Impact Properties and Damage Tolerance and of Bi-Directionally Reinforced Fiber Metal Laminates," Journal of Materials Science, Vol. 42, No. 3, 2007, pp. 948-957. https://doi.org/10.1007/s10853-006-0014-y
- Vogelesang, L.B. and Vlot, A., "Development of Fibre Metal Laminates of Advanced Aerospace Structures," Journal of Materials Science, Vol. 103, No. 1, 2000, pp. 1-5.
- Mosse, L., Compston, P., Cantwell, W.J., Cardew-Hall, M., and Kalyanasundaram, S., "Stamp Forming of Polypropylene Based Fiber-Metal Laminates: The Effect of Process Variables on Formability," Journal of materials Processing Technology, Vol. 172, No. 2, 2005, pp. 163-168.
- Mosse, L., Compston, P., Cantwell, W.J., Cardew-Hall, M., and Kalyanasundaram, S., "The Development of a Finite Element Model for Simulating the Stamp Forming of Fibre-Metal Laminates," Composite Structures, Vol. 75, No. 1, 2006, pp. 298-304. https://doi.org/10.1016/j.compstruct.2006.04.009
- Oh, H.J. and Kim, S.S., "The Effect of the Core-shell Structured Meta-aramid/Epoxy Nanofiber Mats on Interfacial Bonding Strength with an Epoxy Adhesive in Cryogenic Environments," Composite Research, Vol. 26, No. 2, 2013, pp. 129-134. https://doi.org/10.7234/composres.2013.26.2.129
- Jeong, J.S. and Cheong, S.K., "Mode II Interlaminar Fracture Toughness of Hybrid Composites Inserted with Different Types of Non-woven Tissues," Composite Research, Vol. 26, No. 2, 2013, pp. 141-145. https://doi.org/10.7234/composres.2013.26.2.141
- Williams, J.G., "Large Displacements and End Block Effects in The DCB Interlaminar Test in Modes I and II," Journal of Composite Materials, Vol. 21, No. 4, 1987, pp. 330-347. https://doi.org/10.1177/002199838702100403
- Williams, J.G., "The Fracture Mechanics of Delaminaion Tests," Journal of Strain Analysis, Vol. 24, No. 4, 1989, pp. 207-214. https://doi.org/10.1243/03093247V244207
- Hashemi, S., Kinloch, A.J., and Williams, J.G., "Corrections Needed in Double-cantilever Beam Tests for Assessing The Interlaminar Failure of Fibre-composites," Journal of Materials Science Letters, Vol. 8, No. 2, 1989, pp. 125-129. https://doi.org/10.1007/BF00730701
- ASTM D5528-13, Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites, 2013.
- Murri, G.B. and O'Brien, T.K., "Interlaminar GIIc Evaluation of Toughened Resin Matrix Composites using The End-Notched Flexure Test," Proceeding of the 26th AIAA/ASM/ASCE/AHS/ ASC Structures, Structural Dynamics, and Materials Conference, Orlando, Florida, United States of America, April. 1985.
- Carlsson, L.A., Gillespie, J.W., and Trethewey, B.R., "Mode II Interlaminar Fracture Toughness of Graphite/Epoxy and Graphite/PEEK Composites," Journal of Reinforced Plastics and Composites, Vol. 5, No. 3, 1986, pp. 170-187. https://doi.org/10.1177/073168448600500302
- Tsai, G.C., "Design of Composite ENF Specimens and Conduct Three-Point Test to Calculate Mode II Fracture Toughness," Proceeding of the 9th International Conference on Engineering Education, San Juan, Puerto Rico, July, 2006.
- Gillespie, J.W., Delaware Composites Design Encyclopedia: Test Methods, CRC Press, 1990.
- Blackman, B.R.K., Hadavinia, H., Kinloch, A.J., Paraschi, M., and Williams, J.G., "The Calculation of Adhesive Fracture Energies in Mode I: Revisiting The Tapered Double Cantilever Beam (TDCB) Test," Engineering Fracture Mechanics, Vol. 70, No. 2, 2003, pp. 233-248. https://doi.org/10.1016/S0013-7944(02)00031-0
- Lee, C.J., Lee, S.K., Ko, D.C., and Kim, B.M., "Evaluation of Adhesive Properties using Cohesive Zone Model: Mode I," Transactions of the Korean Society of Mechanical Engineers A, Vol. 33, No. 5, 2009, pp. 474-481. https://doi.org/10.3795/KSME-A.2009.33.5.474
- ASTM D2094-00, Standard Practice for Preparation of Bar and Rod Specimens for Adhesion Tests, 2000.
- ASTM D2095-96, Standard Test Method for Tensile Strength of Adhesives by Means of Bar and Rod, 1996.
- Simulia, D.S., ABAQUS User's Manual, Dassault Systems, 2013.
Cited by
- 자동차 측면 도어의 섬유금속적층판을 적용한 임펙트 빔의 수치해석에 의한 성능 평가 vol.30, pp.2, 2016, https://doi.org/10.7234/composres.2017.30.2.158
- CFRP/금속간 접합력 강화를 위한 접합공정 연구 vol.30, pp.6, 2017, https://doi.org/10.7234/composres.2017.30.6.416
- 섬유금속적층판의 모드 I 접합 거동 예측을 위한 Levenberg-Marquardt 기법 기반의 역해석 기법에 관한 수치적 연구 vol.31, pp.5, 2016, https://doi.org/10.7234/composres.2018.31.5.177
- Experimental and numerical investigation of the high-velocity impact resistance of fiber metal laminates and Al 6061-T6 by using electromagnetic launcher vol.33, pp.3, 2016, https://doi.org/10.1007/s12206-019-0222-4
- Prediction of the Delamination at the Steel and CFRP Interface of Hybrid Composite Part vol.14, pp.21, 2016, https://doi.org/10.3390/ma14216285
- Inverse analysis on mode II adhesive properties of PP film in fiber metal laminate using hybrid Levenberg-Marquardt methods vol.30, pp.6, 2016, https://doi.org/10.1080/09243046.2021.1911498