DOI QR코드

DOI QR Code

Evaluation of Fracture Behavior of Adhesive Layer in Fiber Metal Laminates using Cohesive Zone Models

응집영역모델을 이용한 섬유금속적층판 접착층의 모드 I, II 파괴 거동 물성평가

  • Lee, Byoung-Eon (Aerospace Engineering Team 1, Koreanair R&D Center) ;
  • Park, Eu-Tteum (Department of Aerospace Engineering, Pusan National University) ;
  • Ko, Dae-Cheol (Graduate School of Convergence Science, Pusan National University) ;
  • Kang, Beom-Soo (Department of Aerospace Engineering, Pusan National University) ;
  • Song, Woo-Jin (Graduate School of Convergence Science, Pusan National University)
  • Received : 2016.03.24
  • Accepted : 2016.04.28
  • Published : 2016.04.30

Abstract

An understanding of the failure mechanisms of the adhesive layer is decisive in interpreting the performance of a particular adhesive joint because the delamination is one of the most common failure modes of the laminated composites such as the fiber metal laminates. The interface between different materials, which is the case between the metal and the composite layers in this study, can be loaded through a combination of fracture modes. All loads can be decomposed into peel stresses, perpendicular to the interface, and two in-plane shear stresses, leading to three basic fracture mode I, II and III. To determine the load causing the delamination growth, the energy release rate should be identified in corresponding criterion involving the critical energy release rate ($G_C$) of the material. The critical energy release rate based on these three modes will be $G_{IC}$, $G_{IIC}$ and $G_{IIIC}$. In this study, to evaluate the fracture behaviors in the fracture mode I and II of the adhesive layer in fiber metal laminates, the double cantilever beam and the end-notched flexure tests were performed using the reference adhesive joints. Furthermore, it is confirmed that the experimental results of the adhesive fracture toughness can be applied by the comparison with the finite element analysis using cohesive zone model.

섬유금속적층판과 같은 하이브리드 소재는 여러 방향의 하중에 의한 접착층의 파괴로 인해 층간분리가 발생할 수 있다. 모든 하중은 수직 방향의 응력과 면내 두 방향의 전단 응력으로 분해할 수 있으며, 이러한 하중은 접착층의 모드 I, II, III 파괴를 일으킨다. 따라서 하중에 의한 층간분리 현상을 예측하기 위해, 접착층의 모드별 임계 에너지 해방률을 도출하는 것이 중요하다. 본 연구에서는 접착층의 모드 I 임계 에너지 해방률을 측정하기 위해 double cantilever beam 시험을 수행하였으며, 모드 II 임계 에너지 해방률을 측정하기 위해 end-notched flexure 시험을 수행하였다. 또한, 실험으로부터 도출한 임계 에너지 해방률을 ABAQUS의 응집영역모델에 적용하여 유한요소해석을 수행하였으며, 실제 실험 결과와의 비교를 통해 층간분리 현상에 대한 수치해석 기법 적용의 유효성을 입증하였다.

Keywords

References

  1. Rana, S. and Fangueiro, R., Fibrous and Textile Materials for Composite Applications, Springer Science+Business Media, Singapore, 2016.
  2. Compston, P., Cantwell, W.J., Jones, C., and Jones, N., "Impact Perforation Resistance and Fracture Mechanisms of a Thermoplastic Based Fiber-Metal Laminate," Journal of Materials Science Letters, Vol. 20, No. 7, 1996, pp. 163-168.
  3. Vlot, A., "Impact Loading on Fibre Metal Laminates," International Journal of Impact Engineering, Vol. 18, No. 3, 1996, pp. 291-307. https://doi.org/10.1016/0734-743X(96)89050-6
  4. Vlot, A., Kroon, E., and La Rocca, G., "Impact Response of Fiber Metal Laminates," Key Engineering Materials, Vol. 141, 1997, pp. 235-276.
  5. Wu, G., Yang, J.M., and Hahn, H.T., "The Impact Properties and Damage Tolerance and of Bi-Directionally Reinforced Fiber Metal Laminates," Journal of Materials Science, Vol. 42, No. 3, 2007, pp. 948-957. https://doi.org/10.1007/s10853-006-0014-y
  6. Vogelesang, L.B. and Vlot, A., "Development of Fibre Metal Laminates of Advanced Aerospace Structures," Journal of Materials Science, Vol. 103, No. 1, 2000, pp. 1-5.
  7. Mosse, L., Compston, P., Cantwell, W.J., Cardew-Hall, M., and Kalyanasundaram, S., "Stamp Forming of Polypropylene Based Fiber-Metal Laminates: The Effect of Process Variables on Formability," Journal of materials Processing Technology, Vol. 172, No. 2, 2005, pp. 163-168.
  8. Mosse, L., Compston, P., Cantwell, W.J., Cardew-Hall, M., and Kalyanasundaram, S., "The Development of a Finite Element Model for Simulating the Stamp Forming of Fibre-Metal Laminates," Composite Structures, Vol. 75, No. 1, 2006, pp. 298-304. https://doi.org/10.1016/j.compstruct.2006.04.009
  9. Oh, H.J. and Kim, S.S., "The Effect of the Core-shell Structured Meta-aramid/Epoxy Nanofiber Mats on Interfacial Bonding Strength with an Epoxy Adhesive in Cryogenic Environments," Composite Research, Vol. 26, No. 2, 2013, pp. 129-134. https://doi.org/10.7234/composres.2013.26.2.129
  10. Jeong, J.S. and Cheong, S.K., "Mode II Interlaminar Fracture Toughness of Hybrid Composites Inserted with Different Types of Non-woven Tissues," Composite Research, Vol. 26, No. 2, 2013, pp. 141-145. https://doi.org/10.7234/composres.2013.26.2.141
  11. Williams, J.G., "Large Displacements and End Block Effects in The DCB Interlaminar Test in Modes I and II," Journal of Composite Materials, Vol. 21, No. 4, 1987, pp. 330-347. https://doi.org/10.1177/002199838702100403
  12. Williams, J.G., "The Fracture Mechanics of Delaminaion Tests," Journal of Strain Analysis, Vol. 24, No. 4, 1989, pp. 207-214. https://doi.org/10.1243/03093247V244207
  13. Hashemi, S., Kinloch, A.J., and Williams, J.G., "Corrections Needed in Double-cantilever Beam Tests for Assessing The Interlaminar Failure of Fibre-composites," Journal of Materials Science Letters, Vol. 8, No. 2, 1989, pp. 125-129. https://doi.org/10.1007/BF00730701
  14. ASTM D5528-13, Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites, 2013.
  15. Murri, G.B. and O'Brien, T.K., "Interlaminar GIIc Evaluation of Toughened Resin Matrix Composites using The End-Notched Flexure Test," Proceeding of the 26th AIAA/ASM/ASCE/AHS/ ASC Structures, Structural Dynamics, and Materials Conference, Orlando, Florida, United States of America, April. 1985.
  16. Carlsson, L.A., Gillespie, J.W., and Trethewey, B.R., "Mode II Interlaminar Fracture Toughness of Graphite/Epoxy and Graphite/PEEK Composites," Journal of Reinforced Plastics and Composites, Vol. 5, No. 3, 1986, pp. 170-187. https://doi.org/10.1177/073168448600500302
  17. Tsai, G.C., "Design of Composite ENF Specimens and Conduct Three-Point Test to Calculate Mode II Fracture Toughness," Proceeding of the 9th International Conference on Engineering Education, San Juan, Puerto Rico, July, 2006.
  18. Gillespie, J.W., Delaware Composites Design Encyclopedia: Test Methods, CRC Press, 1990.
  19. Blackman, B.R.K., Hadavinia, H., Kinloch, A.J., Paraschi, M., and Williams, J.G., "The Calculation of Adhesive Fracture Energies in Mode I: Revisiting The Tapered Double Cantilever Beam (TDCB) Test," Engineering Fracture Mechanics, Vol. 70, No. 2, 2003, pp. 233-248. https://doi.org/10.1016/S0013-7944(02)00031-0
  20. Lee, C.J., Lee, S.K., Ko, D.C., and Kim, B.M., "Evaluation of Adhesive Properties using Cohesive Zone Model: Mode I," Transactions of the Korean Society of Mechanical Engineers A, Vol. 33, No. 5, 2009, pp. 474-481. https://doi.org/10.3795/KSME-A.2009.33.5.474
  21. ASTM D2094-00, Standard Practice for Preparation of Bar and Rod Specimens for Adhesion Tests, 2000.
  22. ASTM D2095-96, Standard Test Method for Tensile Strength of Adhesives by Means of Bar and Rod, 1996.
  23. Simulia, D.S., ABAQUS User's Manual, Dassault Systems, 2013.

Cited by

  1. 자동차 측면 도어의 섬유금속적층판을 적용한 임펙트 빔의 수치해석에 의한 성능 평가 vol.30, pp.2, 2016, https://doi.org/10.7234/composres.2017.30.2.158
  2. CFRP/금속간 접합력 강화를 위한 접합공정 연구 vol.30, pp.6, 2017, https://doi.org/10.7234/composres.2017.30.6.416
  3. 섬유금속적층판의 모드 I 접합 거동 예측을 위한 Levenberg-Marquardt 기법 기반의 역해석 기법에 관한 수치적 연구 vol.31, pp.5, 2016, https://doi.org/10.7234/composres.2018.31.5.177
  4. Experimental and numerical investigation of the high-velocity impact resistance of fiber metal laminates and Al 6061-T6 by using electromagnetic launcher vol.33, pp.3, 2016, https://doi.org/10.1007/s12206-019-0222-4
  5. Prediction of the Delamination at the Steel and CFRP Interface of Hybrid Composite Part vol.14, pp.21, 2016, https://doi.org/10.3390/ma14216285
  6. Inverse analysis on mode II adhesive properties of PP film in fiber metal laminate using hybrid Levenberg-Marquardt methods vol.30, pp.6, 2016, https://doi.org/10.1080/09243046.2021.1911498