DOI QR코드

DOI QR Code

200kJ 대용량 에너지 흡수용 변형튜브 설계에 관한 연구

Study on the Design of Deformation Tube for 200kJ Large Energy Absorption

  • Kim, Jin Mo (Department of Mechanical Engineering, Graduate school, Korea Polytechnic University) ;
  • Lee, Jong Kil (Department of Mechanical Engineering, Korea Polytechnic University) ;
  • Kim, Ki Nam (R&D Center, Rail system division, Yujin machinery LTD.)
  • 투고 : 2015.11.24
  • 심사 : 2016.03.04
  • 발행 : 2016.04.30

초록

고속철도 차량의 시장 점유율은 전 세계적으로 확대되고 있다. 고성능 충격 에너지 흡수 요소는 철도차량의 안전 기준을 충족하는 것이 필수 요소이다. 변형 튜브 조립체는 철도 차량에 대한 전형적인 에너지 흡수 요소이다. 그것은 변형 튜브와 압입 펀치로 구성되어 있으며 튜브 조립체의 성능은 튜브의 소성 영역에서 흡수 에너지 특성에 의존한다. 본 논문의 변형 튜브에서 흡수하는 소성변형 에너지는 200kJ의 철도차량 충돌 에너지를 흡수하도록 설계되어 있다. 슬래브 법과 유한 요소해석을 사용하여 초기 단계에서 펀치의 반력은 예측되며 설계된 튜브 조립체의 성능은 실험으로 확인되었다.

The market share of high-speed railway vehicles is increasing across the world. A high-performance impact energy absorption factor is essential to satisfy the safety standards of railway vehicles. A deformed tube assembly is a typical energy absorption factor in railway vehicles. The tube assembly comprises a deformed tube and a press-fitting punch, its performance depends on the absorption energy characteristics in the plastic zone of the tube. In this study, a deformed tube assembly of a railway vehicle is designed that can absorb a maximum impact energy of 200kJ under plastic deformation. Slab method and finite element analysis are used to estimate the reaction force of the punch in the initial stage, the performance of the designed tube assembly is confirmed experimentally.

키워드

참고문헌

  1. K.H. Ahn (2008) Study on the crash energy absorption and dynamic local buckling of the expansion tubes, Master Thesis, Korea Advanced Institute of Science and Technology.
  2. W.M. Choi, T.S. Kwon (2009) Experimental investigation on effect of conical angle of punch on energy absorbing characteristic of expansion tubes, KSAE 09-B0287, pp. 1712-1717.
  3. W.M. Choi, T.S. Kwon, H.S. Jung, J.S. Kim (2011) Study on rupture of tube type crash energy absorber using finite element method, World Academy of Science, Engineering and Technology, Vol. 5, pp. 538-543.
  4. S.J. Heo, J.H. Lee, J.S. Koo (1998) Design of impact energy absorber for high speed railway vehicles, Proceeding of the KSR Conference, Korea, pp. 377-384.
  5. X.M. Qiu, L.H. Hea, J. Gub, X..H Yua (2013) A three-dimensional model of circular tube under quasi-static external free inversion, International Journal of Mechanical Sciences, Vol. 75, pp. 87-93. https://doi.org/10.1016/j.ijmecsci.2013.06.009
  6. Y.K. Ko, K.H. Ahn, H. Huh, W.M. Choi, H.S. Jung, T.S. Kwon (2009) Prediction of crash energy absorption capacity of a tearing tube, KSAE 2009 Annual Conference & Exhibition, Song-do, Incheon, pp. 3134-3140.
  7. A.A. Singace , H. Sobky (1997) Behaviour of axially crushed corrugated tubes, Int. J. Mech. Sci., 39(3), pp. 249-268. https://doi.org/10.1016/S0020-7403(96)00022-7
  8. S. Salehghaffari, M. Tajdari, M. Panahi, F. Mokhtarnezhad (2010) Attempts to improve energy absorption characteristics of circular metal tubes subjected to axial loading, Thin-Walled Structures Vol. 48, pp. 379-390. https://doi.org/10.1016/j.tws.2010.01.012
  9. S. Salehghaffari, M. Rais-Rohani, A Najafi (2011) Analysis and optimization of externally stiffened crush tubes, Thin-Walled Structures, Vol. 49, pp. 397-408. https://doi.org/10.1016/j.tws.2010.11.010
  10. R. Velmurugan, R. Muralikannan (2009) Energy absorption characteristics of annealed steel tubes of various cross sections in static and dynamic loading, Latin American Journal of Solids and Structures, Vol. 6, pp. 385-412.
  11. Y. Yamada, T. Banno, Z. Xie, C. Wen (2005) Energy absorption and crushing behaviour of foam-filled aluminium tubes, Materials Transactions, 46(12), pp. 2633-2636. https://doi.org/10.2320/matertrans.46.2633
  12. X.M. Qiu, L.H. Hea, J. Gub, X.H. Yua (2013) A three-dimensional model of circular tube under quasi-static external free inversion, International Journal of Mechanical Sciences, Vol. 75, pp. 87-93. https://doi.org/10.1016/j.ijmecsci.2013.06.009
  13. A.A.A. Alghamdi (2001) Collapsible impact energy absorbers, Thin-Walled Structures, Vol. 39, pp. 189-213. https://doi.org/10.1016/S0263-8231(00)00048-3
  14. British-Adopted European Standard (2010) Railway Applications Crash Worthiness Requirements for Railway Vehicle Bodies, BS EN 15227:2008+A12010.
  15. J.M. Kim (2016) Prediction of the performance of a deformation tube for railway cars using the slab method, Transaction of Materials Processing, Forthcoming 2016 April.
  16. D.W. Kim (1998) Plasticity, Cheongmungak, Paju (Kor., Republic of), pp. 171-177.
  17. https://things.maths.cam.ac.uk/computing/software/abaqus_docs/docs/v6.12/books/stm/default.htm (Accessed 7 April 2016).