DOI QR코드

DOI QR Code

Nanotechnology, smartness and orthotropic nonhomogeneous elastic medium effects on buckling of piezoelectric pipes

  • Mosharrafian, Farhad (Department of Civil Engineering, Khomein Branch, Islamic Azad University) ;
  • Kolahchi, Reza (Department of Civil Engineering, Khomein Branch, Islamic Azad University)
  • Received : 2015.12.03
  • Accepted : 2016.04.21
  • Published : 2016.06.10

Abstract

The effects of nanotechnology and smartness on the buckling reduction of pipes are the main contributions of present work. For this ends, the pipe is simulated with classical piezoelectric polymeric cylindrical shell reinforced by armchair double walled boron nitride nanotubes (DWBNNTs), The structure is subjected to combined electro-thermo-mechanical loads. The surrounding elastic foundation is modeled with a novel model namely as orthotropic nonhomogeneous Pasternak medium. Using representative volume element (RVE) based on micromechanical modeling, mechanical, electrical and thermal characteristics of the equivalent composite are determined. Employing nonlinear strains-displacements and stress-strain relations as well as the charge equation for coupling of electrical and mechanical fields, the governing equations are derived based on Hamilton's principal. Based on differential quadrature method (DQM), the buckling load of pipe is calculated. The influences of electrical and thermal loads, geometrical parameters of shell, elastic foundation, orientation angle and volume percent of DWBNNTs in polymer are investigated on the buckling of pipe. Results showed that the generated ${\Phi}$ improved sensor and actuator applications in several process industries, because it increases the stability of structure. Furthermore, using nanotechnology in reinforcing the pipe, the buckling load of structure increases.

Keywords

References

  1. Agarwal, B.L. and Sobel, L.H. (1977), "Weight comparisons of optimized stiffened, un stiffened, and sandwich cylindrical shells", AIAA J., 14, 1000-1008.
  2. Brockmann, T.H. (2009), Theory of adaptive fiber composites from piezoelectric material behavior to dynamics of rotating structures, Springer, USA.
  3. Brush, D.O. and Almroth, B.O. (1975), Buckling of bars, plates and shells, McGraw-Hill, New York.
  4. Ghorbanpour Arani, A., Golabi, S., Loghman, A. and Daneshi, H. (2007), "Investigating elastic stability of cylindrical shell with an elastic core under axial compression by energy method", J. Mech. Sci. Tech., 21, 693-698. https://doi.org/10.1007/BF02916347
  5. Ghorbanpour Arani, A., Kolahchi, R., Mosallaie Barzoki, A.A. and Loghman, A. (2011a), "Electrothermomechanical behaviors of FGPM spheres using analytical method and ANSYS software", J. Appl. Math. Model., 36, 139-157.
  6. Ghorbanpour Arani, A., Kolahchi, R. and Mosallaie Barzoki, A.A. (2011b), "Effect of material inhomogeneity on electro-thermo-mechanical behaviors of functionally graded piezoelectric rotating cylinder", J. Appl. Math. Model., 35, 2771-2789. https://doi.org/10.1016/j.apm.2010.11.076
  7. Ghorbanpour Arani, Abdollahian, M. and Kolahchi, R. (2015a), "Nonlinear vibration of embedded smart composite microtube conveying fluid based on modified couple stress theory", Polym. Compos., 36, 1314-1324. https://doi.org/10.1002/pc.23036
  8. Ghorbanpour Arani, A., Kolahchi, R. and Zarei, M.Sh. (2015b), "Visco-surface-nonlocal piezoelasticity effects on nonlinear dynamic stability of graphene sheets integrated with ZnO sensors and actuators using refined zigzag theory", Compos. Struct., 132, 506-526. https://doi.org/10.1016/j.compstruct.2015.05.065
  9. Hutchinson, J.W. and He, M.Y. (2000), "Buckling of cylindrical sandwich shells with metal foam cores", Int. J. Solid. Struct., 37, 6777-6794. https://doi.org/10.1016/S0020-7683(99)00314-5
  10. Junger, M.C. and Mass, C. (1952), "Vibration of elastic shells in a fluid medium and the associated radiation of sound", J. Appl. Mech., 74, 439-445.
  11. Karam, G.N. and Gibson, L.J. (1995), "Elastic buckling of cylindrical shells with elastic cores I. analysis", Int. J. Solid. Struct., 32, 1259-1283. https://doi.org/10.1016/0020-7683(94)00147-O
  12. Khayat, M., Poorveis, D., Moradi, Sh. and Hemmati, M. (2016), "Buckling of thick deep laminated composite shell of revolution under follower forces", Struct. Eng. Mech., 58, 59-91. https://doi.org/10.12989/sem.2016.58.1.059
  13. Kotsilkova, R. (2007), Thermoset Nanocomposites for Engineering Applications, Smithers Rapra Technology, USA.
  14. Kolahchi, R., Moniri Bidgoli, A.M. and Heydari M.M. (2015a), "Size-dependent bending analysis of FGM nano-sinusoidal plates resting on orthotropic elastic medium", Struct. Eng. Mech., 55, 1001-1014. https://doi.org/10.12989/sem.2015.55.5.1001
  15. Kolahchi, R., Rabani Bidgoli, M., Beygipoor, Gh. and Fakhar, M.H. (2015b), "A nonlocal nonlinear analysis for buckling in embedded FG-SWCNT-reinforced microplates subjected to magnetic field", J. Mech. Sci. Tech., 29, 3669-3677. https://doi.org/10.1007/s12206-015-0811-9
  16. Kolahchi, R. and Moniribidgoli, A.M. (2016), "Size-dependent sinusoidal beam model for dynamic instability of single-walled carbon nanotubes", Appl. Math. Mech., 37, 265-274. https://doi.org/10.1007/s10483-016-2030-8
  17. MerhariHybrid, L. (2002), Nanocomposites for Nanotechnology, Springer Science, New York.
  18. Mikhasev, G. (2014), "On localized modes of free vibrations of single-walled carbon nanotubes embedded in nonhomogeneous elastic medium", ZAMM.Z. Angew. Math. Mech., 94, 130-141. https://doi.org/10.1002/zamm.201200140
  19. Mohammadi, H., Mahzoon, M., Mohammadi, M. and Mohammadi, M. (2014), "Postbuckling instability of nonlinear nanobeam with geometric imperfection embedded in elastic foundation", Nonlin. Dyn., 76, 2005-2016. https://doi.org/10.1007/s11071-014-1264-x
  20. Mosallaie Barzoki, A.A., Ghorbanpour Arani, A., Kolahchi, R., Mozdianfard, M.R. and Loghman, A. (2013), "Nonlinear buckling response of embedded piezoelectric cylindrical shell reinforced with BNNT under electro-thermo-mechanical loadings using HDQM", Compos. Part B, 44, 722-727. https://doi.org/10.1016/j.compositesb.2012.01.052
  21. Nasihatgozar, M., Daghigh, V., Eskandari, M., Nikbin, K., Simoneaud, A. (2016), "Buckling analysis of piezoelectric cylindrical composite panels reinforced with carbon nanotubes", Int. J. Mech. Sci., 107, 69-79. https://doi.org/10.1016/j.ijmecsci.2016.01.010
  22. Nguyen-Van, H., Mai-Duy, N., Karunasena, W. and Tran-Cong, T. (2011), "Buckling and vibration analysis of laminated composite plate/shell structures via a smoothed quadrilateral flat shell element with in-plane rotations", Compos. Struct., 89, 612-625. https://doi.org/10.1016/j.compstruc.2011.01.005
  23. Rabani Bidgoli, M., Karimi, M.S. Ghorbanpour Arani, A. (2015), "Viscous fluid induced vibration and instability of FG-CNT-reinforced cylindrical shells integrated with piezoelectric layers", Steel Compos. Struct., 19, 713-733. https://doi.org/10.12989/scs.2015.19.3.713
  24. Rahmani, O., Khalili, S.M.R. and Malekzadeh, K. (2010), "Free vibration response of composite sandwich cylindrical shell with flexible core", Compos. Struct., 92, 1269-1281. https://doi.org/10.1016/j.compstruct.2009.10.021
  25. Salehi-Khojin, A. and Jalili, N. (2008), "Buckling of boron nitride nanotube reinforced piezoelectric polymeric composites subject to combined electro-thermo-mechanical loadings", Compos. Sci. Technol., 68, 1489-1501. https://doi.org/10.1016/j.compscitech.2007.10.024
  26. Schwartz, M. (2009), SMART MATERIALS by John Wiley and Sons, A Wiley-Interscience Publication Inc., New York.
  27. Sun, J., Xu, X., Lim, C.W., Zhou, Zh. and Xiao, S. (2016), "Accurate thermo-electro-mechanical buckling of shear deformable piezoelectric fiber-reinforced composite cylindrical shells", Compos. Struct., 141, 221-231. https://doi.org/10.1016/j.compstruct.2016.01.054
  28. Tan, P. and Tong, L. (2001), "Micro-electromechanics models for piezoelectric-fiber-reinforced composite materials", Compos. Sci. Technol., 61, 759-769. https://doi.org/10.1016/S0266-3538(01)00014-8
  29. Vang, J. (2006), The Mechanics of Piezoelectric Structures, World Scientific Publishing Co, USA.
  30. Yu, V. (2009), Christopher, T., Bowen, R: Electromechanical Properties in Composites Based on Ferroelectrics, Springer-Verlag, London.
  31. Ye, L., Lun, G. and Ong, L.S. (2011), "Buckling of a thin-walled cylindrical shell with foam core under axial compression", Thin Wall. Struct., 49, 106-111. https://doi.org/10.1016/j.tws.2010.08.011

Cited by

  1. Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocal-piezoelasticity theories vol.157, 2016, https://doi.org/10.1016/j.compstruct.2016.08.032
  2. Nonlinear harmonic vibration analysis of fluid-conveying piezoelectric-layered nanotubes vol.123, 2017, https://doi.org/10.1016/j.compositesb.2017.05.012
  3. Nonlinear vibration analysis of piezoelectric plates reinforced with carbon nanotubes using DQM vol.18, pp.4, 2016, https://doi.org/10.12989/sss.2016.18.4.787
  4. Agglomeration effects on the dynamic buckling of viscoelastic microplates reinforced with SWCNTs using Bolotin method vol.90, pp.1, 2017, https://doi.org/10.1007/s11071-017-3676-x
  5. Dynamic stability of FG-CNT-reinforced viscoelastic micro cylindrical shells resting on nonhomogeneous orthotropic viscoelastic medium subjected to harmonic temperature distribution and 2D magnetic fi vol.25, pp.2, 2017, https://doi.org/10.12989/was.2017.25.2.131
  6. Reliability analysis-based conjugate map of beams reinforced by ZnO nanoparticles using sinusoidal shear deformation theory vol.28, pp.2, 2016, https://doi.org/10.12989/scs.2018.28.2.195
  7. Buckling load optimization of beam reinforced by nanoparticles vol.73, pp.5, 2016, https://doi.org/10.12989/sem.2020.73.5.481
  8. Buckling analysis of smart beams based on higher order shear deformation theory and numerical method vol.35, pp.5, 2016, https://doi.org/10.12989/scs.2020.35.5.635
  9. Optimization and mathematical modelling of multi-layer beam based on sinusoidal theory vol.79, pp.1, 2016, https://doi.org/10.12989/sem.2021.79.1.109