Acknowledgement
Supported by : CAPES, CNPq
References
- Abbas, H., Paul, D.K., Godbole, P.N. and Nayak, G.C. (1996), "Aircraft crash upon outer containment of nuclear power plant", Nucl. Eng. Des., 160(1), 13-50. https://doi.org/10.1016/0029-5493(95)01049-1
- Cervera, M. (1986), "Nonlinear analysis of reinforced concrete structures using three dimensional and shell finite element models", Ph.D. Dissertation, Swansea University, Swansea.
- Cervera, M., Hinton, E. and Bicanic, N. (1988), "Non-linear transient dynamic analysis of three dimensional structures", Numerical Methods and Software for Dynamic Analysis of Plates and Shells, E. Hinton, R.W., Pineridge Press, Swansea, U.K.
- Dias, M.M., Tamayo, J.L.P., Morsch, I.B. and Awruch, A.M. (2015), "Time dependent finite element analysis of steel-concrete composite beams considering partial interaction", Comput. Concrete, 15(4), 687-707. https://doi.org/10.12989/cac.2015.15.4.687
- Hu, H.T. and Liang, J.I. (2000), "Ultimate analysis of BWR Mark III reinforced concrete containment subjected to internal pressure", Nucl. Eng. Des., 195, 1-11. https://doi.org/10.1016/S0029-5493(99)00163-6
- Iqbal, M.A., Rai, S., Sadique M.R., and Bhargava, P. (2012), "Numerical simulation of aircraft crash on nuclear containment structure", Nucl. Eng. Des., 243, 321-335. https://doi.org/10.1016/j.nucengdes.2011.11.019
- Kamagata, S. and Takewaki, I. (2013), "Ocurrence mechanism of recent large earthquake ground motions at nuclear power plant sites in Japan under soil-structure interaction", Earthq. Struct., 5(4), 557-585.
- Kukreja, M. (2005), "Damage evaluation of 500 MWe Indian pressurized heavy water reactor nuclear containment for aircraft impact", Nucl. Eng. Des., 235(17-19), 1807-1817. https://doi.org/10.1016/j.nucengdes.2005.05.015
- Liu, G.Q. (1985), "Nonlinear and transient finite element analysis of general reinforced concrete plates and shells", Ph.D. Dissertation, Swansea University, Swansea.
- Manjuprasad, M., Gopalakrishnan, S. and Appa Rao, T.V.S.R (2001), "Nonlinear dynamic response of a reinforced concrete secondary containment shell subjected to seismic load", Eng. Struct., 23(5), 397-406. https://doi.org/10.1016/S0141-0296(00)00070-5
- Pandey, A.K. (2010), "Damage prediction of RC containment shell under impact and blast loading", Struct. Eng. Mech., 36(6), 729-744. https://doi.org/10.12989/sem.2010.36.6.729
- Pandey, A.K., Kumar, R., Paul, D.K. and Trikha, D.N. (2006), "Strain rate model for dynamic analysis of reinforced concrete structures", J. Struct. Eng., 132(9), 1393-1401. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:9(1393)
- Rebora, B. and Zimmermann, Th. (1976), "Dynamic rupture analysis of reinforced concrete shells", Nucl. Eng. Des., 37(2), 269-297. https://doi.org/10.1016/0029-5493(76)90021-2
- Sadique, M.R., Iqbal, M.A. and Bhargava, P. (2015), "Crash analysis of military aircraft on nuclear contaiment", Struct. Eng. Mech., 53(1), 73-87. https://doi.org/10.12989/sem.2015.53.1.073
- Sayed, M.A, Go, S., Cho S.G. and Kim, D. (2015), "Seismic responses of base isolated nuclear power plant structures considering spatially varying ground motions", Struct. Eng. Mech., 54(1), 169-188. https://doi.org/10.12989/sem.2015.54.1.169
- Schenk, O. and Gartner, K. (2004), "Solving unsymmetric sparse systems of linear equations with PARDISO", J. Future Gener. Comput. Syst., 20(3), 475-487. https://doi.org/10.1016/j.future.2003.07.011
- Tamayo, J.L.P. (2015), "Numerical simulation of soil-pile interaction by using the finite element method", Ph.D. Dissertation, Federal University of Rio Grande do Sul, Porto Alegre.
- Tamayo, J.L.P., Awruch, A.M. and Morsch, I.B. (2013b), "Numerical modeling of reinforced concrete structures: static and dynamic analysis", Revista Escola de Minas, 66(4), 425-430. https://doi.org/10.1590/S0370-44672013000400004
- Tamayo, J.L.P., Morsch, I.B. and Awruch, A.M. (2013a), "Static and dynamic analysis of reinforced concrete shells", Latin Am. J. Solid. Struct., 10(6), 1109-1134. https://doi.org/10.1590/S1679-78252013000600003
Cited by
- Finite element study of effective width in steel-concrete composite beams under long-term service loads vol.15, pp.8, 2018, https://doi.org/10.1590/1679-78254599
- Numerical simulation of external pre-stressed steel-concrete composite beams vol.19, pp.2, 2016, https://doi.org/10.12989/cac.2017.19.2.191
- Seismic assessment of base-isolated nuclear power plants vol.2, pp.3, 2017, https://doi.org/10.12989/acd.2017.2.3.211
- Some Aspects of Numerical Modeling of Steel-Concrete Composite Beams with Prestressed Tendons vol.16, pp.7, 2016, https://doi.org/10.1590/1679-78255599
- Statistical bias indicators for the long-term displacement of steel-concrete composite beams vol.24, pp.4, 2016, https://doi.org/10.12989/cac.2019.24.4.379
- A new design concept for ocean nuclear power plants using tension leg platform vol.76, pp.3, 2016, https://doi.org/10.12989/sem.2020.76.3.367
- Effect of rebar spacing on the behavior of concrete slabs under projectile impact vol.77, pp.3, 2016, https://doi.org/10.12989/sem.2021.77.3.329
- MOSAIC: An Effective FFT-based Numerical Method to Assess Aging Properties of Concrete vol.19, pp.2, 2021, https://doi.org/10.3151/jact.19.149
- Damage potential: A dimensionless parameter to characterize soft aircraft impact into robust targets vol.78, pp.1, 2021, https://doi.org/10.12989/sem.2021.78.1.031