References
- J. Mai, C.-N. Chuah, A. Sridharan, T. Ye, and H. Zang, "Is sampled data sufficient for anomaly detection?," in Proc. ACM SIGCOMM, 2006, pp. 165-176.
- P. Winter, E. Hermann, and M. Zeilinger, "Inductive intrusion detection in flow-based network data using one-class support vector machines," in Proc. IFIP NTMS, 2011, pp. 1-5.
- A. Sperotto and A. Pras, "Flow-based intrusion detection," in Proc. IFIP/IEEE IM, 2011, pp. 958-963.
- B. Li, J. Springer, G. Bebis, and M. Hadi Gunes, "A survey of network flow applications," J. Netw. Comput. Appl., vol. 36, pp. 567-581, 2013. https://doi.org/10.1016/j.jnca.2012.12.020
- K. Bartos and M. Rehak, "Towards efficient flow sampling technique for anomaly detection," in Proc. TMA, 2012, pp. 93-106.
- J. Mai, A. Sridharan, C.-N. Chuah, H. Zang, and T. Ye, "Impact of packet sampling on portscan detection," J. Sel. Areas Commun., vol. 24, pp. 2285-2298, 2006. https://doi.org/10.1109/JSAC.2006.884027
- The CAIDA UCSD "DDoS Attack 2007" Dataset, [Online]. Available: http://www.caida.org/data/passive/ddos-200708nct04_dataset.xml
- The CAIDA UCSD Anonymized Internet Traces 2013, [Online]. Available: http://www.caida.org/data/passive/passive_2013_dataset.xml
- The CAIDA UCSD Anonymized Internet Traces 2012, [Online]. Available: http://www.caida.org/data/passive/passive_2012_dataset.xml
- A. Sperotto et al., "An overview of IP flow-based intrusion detection," IEEE Commun. Surveys Tuts., vol. 12, pp. 343-356, 2010. https://doi.org/10.1109/SURV.2010.032210.00054
- Z. Jadidi, V. Muthukkumarasamy, and E. Sithirasenan, "Metaheuristic algorithms based flow anomaly detector," in Proc. APCC, 2013, pp. 717-722.
- Z. Jadidi, V. Muthukkumarasamy, E. Sithirasenan, and M. Sheikhan, "Flow-based anomaly detection using neural network optimized with GSA algorithm," in Proc. IEEE NFSP, 2013, pp.76-81.
- M. Sheikhan and Z. Jadidi, "Flow-based anomaly detection in high-speed links using modified GSA-optimized neural network," Neural Comput. Appl., vol. 24, pp. 599-611, 2014. https://doi.org/10.1007/s00521-012-1263-0
- P. Gogoi, D. Bhattacharyya, B. Borah, and J. K. Kalita, "MLH-IDS: A multi-level hybrid intrusion detection method," The Computer Journal, vol. 57, pp. 602-623, 2014. https://doi.org/10.1093/comjnl/bxt044
- N. Hohn and D. Veitch, "Inverting sampled traffic," IEEE/ACM Trans. Netw., vol. 14, pp. 68-80, 2006. https://doi.org/10.1109/TNET.2005.863456
- N. Duffield, C. Lund, and M. Thorup, "Estimating flow distributions from sampled flow statistics," IEEE/ACM Trans. Netw., vol. 13, pp. 933-946, 2005. https://doi.org/10.1109/TNET.2005.852874
- B.-Y. Choi, J. Park, and Z.-L. Zhang, "Adaptive packet sampling for accurate and scalable flow measurement," in Proc. IEEE GLOBECOM, 2004, pp. 1448-1452.
- N. Duffield, C. Lund, and M. Thorup, "Properties and prediction of flow statistics from sampled packet streams," in Proc. ACM SIGCOMM, 2002, pp. 159-171.
- C. Estan and G. Varghese, "New directions in traffic measurement and accounting," in Proc. ACM SIGCOMM, vol. 32, 2002.
- G. Androulidakis, V. Chatzigiannakis, and S. Papavassiliou, "Network anomaly detection and classification via opportunistic sampling," IEEE Netw., vol. 23, pp. 6-12, 2009.
- G. Androulidakis and S. Papavassiliou, "Improving network anomaly detection via selective flow-based sampling," IET Commun., vol. 2, pp. 399-409, 2008. https://doi.org/10.1049/iet-com:20070231
- V. Carela-Espanol, P. Barlet-Ros, A. Cabellos-Aparicio, and J. Sole-Pareta, "Analysis of the impact of sampling on NetFlow traffic classification," Computer Netw., vol. 55, pp. 1083-1099, 2011. https://doi.org/10.1016/j.comnet.2010.11.002
- Z. Jadidi, V. Muthukkumarasamy, E. Sithirasenan, and K. Singh, "Performance of flow-based anomaly detection in sampled traffic," J. Netw., vol. 10, pp. 512-520, 2016.
- Z. Jadidi, V. Muthukkumarasamy, E. Sithirasenan, and K. Singh, "Intelligent sampling using an optimized neural network," J. Netw., vol. 11, pp. 16-27, 2016.
- Q. A. Tran, F. Jiang, and J. Hu, "A real-time netflow-based intrusion detection system with improved BBNN and high-frequency field programmable gate arrays," in Proc. IEEE TrustCom, 2012, pp. 201-208.
- [Online]. Available: http://www.mindrot.org/projects/softflowd/, as of June 2014.
- [Online]. Available: http://www.mindrot.org/projects/flowd/, as of June 2014.
- T. Qin, X. Guan, W. Li, P. Wang, and M. Zhu, "A new connection degree calculation and measurement method for large scale network monitoring," J. Netw. Comput. Appl., vol. 41, pp. 15-26, 2014. https://doi.org/10.1016/j.jnca.2013.10.008
- I. Paredes-Oliva, P. Barlet-Ros, and J. Sole-Pareta, "Scan detection under sampling: A new perspective," Computer, vol. 46, pp. 38-44, 2013.
- G. Androulidakis and S. Papavassiliou, "Intelligent flow-based sampling for effective network anomaly detection," in Proc. IEEE GLOBECOM, 2007, pp. 1948-1953.