DOI QR코드

DOI QR Code

Energy Efficiency of Distributed Massive MIMO Systems

  • He, Chunlong (College of Information Engineering, Shenzhen University) ;
  • Yin, Jiajia (College of Information Engineering, Shenzhen University) ;
  • He, Yejun (College of Information Engineering, Shenzhen University) ;
  • Huang, Min (College of Information Engineering, Shenzhen University) ;
  • Zhao, Bo (College of Information Engineering, Shenzhen University)
  • Received : 2015.07.14
  • Accepted : 2016.12.19
  • Published : 2016.08.31

Abstract

In this paper, we investigate energy efficiency (EE) of the traditional co-located and the distributed massive multiple-input multiple-output (MIMO) systems. First, we derive an approximate EE expression for both the idealistic and the realistic power consumption models. Then an optimal energy-efficient remote access unit (RAU) selection algorithm based on the distance between the mobile stations (MSs) and the RAUs are developed to maximize the EE for the downlink distributed massive MIMO systems under the realistic power consumption model. Numerical results show that the EE of the distributed massive MIMO systems is larger than the co-located massive MIMO systems under both the idealistic and realistic power consumption models, and the optimal EE can be obtained by the developed energy-efficient RAU selection algorithm.

Keywords

References

  1. H. Yin, D. Gesbert, M. Filippou, and Y. Liu, "A coordinated approach to channel estimation in large-scale multiple-antenna systems," IEEE J. Sel. Areas Commun., vol. 31, no. 2, pp. 264-273, Feb. 2013. https://doi.org/10.1109/JSAC.2013.130214
  2. L. Huang, Y. Xiao, K. Liu, H.C. So, and J.-K.Zhang, "Bayesian information criterion for source enumeration in large-scale adaptive antenna array," IEEE Trans. Veh. Technol., pp. 1-16, May 2015.
  3. H. Q. Ngo and E. G. Larsson, "EVD-based channel estimations for multicell multiuser MIMO with very large antenna arrays," in Proc. IEEE ICASSP, Mar. 2012.
  4. Y. Song et al., "Friendship Influence on Mobile Behavior of Location Based Social Network Users," J. Commun. Netw., vol. 17, pp. 126-132, Apr. 2015. https://doi.org/10.1109/JCN.2015.000026
  5. J.-L. Yan, J.-D. Li, and L.-J. Zhao, "Joint user scheduling and power allocation with quality of service guarantees in downlink distributed antennas system," IET Commun., vol. 8, pp. 299-307, Feb. 2014. https://doi.org/10.1049/iet-com.2013.0520
  6. J. Gan, Y. Li, L. Xiao, S. Zhou, and J.Wang, "On sum rate and power consumption of multi-user distributed antenna system with circular antenna layout," EURASIP J. Wireless Commun. Netw., vol. 2007, no. 089780, Feb. 2013.
  7. M. Matthaiou, C. Zhong, M. R. McKay, and T. Ratnarajah, "Sum rate analysis of ZF receivers in distributed MIMO systems," IEEE J. Sel. Areas Commun., vol. 31, no. 2, pp. 180-191, Feb. 2013. https://doi.org/10.1109/JSAC.2013.130207
  8. L. Dai, "An uplink capacity analysis of the distributed antenna system (DAS): From cellular DAS to DAS with virtual cells," IEEE Trans. Wireless Commun., vol. 13, no. 5, pp. 2717-2731, May 2014. https://doi.org/10.1109/TWC.2014.033114.130557
  9. A. Yang, Y. Jing, C. Xing, Z. Fei, and J. Kuang, "Performance analysis and location optimization for massive MIMO systems with circularly distributed antennas," to appear on IEEE Trans. Wireless Commun., 2015.
  10. J. Zuo, J. Zhang, C. Yuen, W. Jiang, and W. Luo, "Multi-cell multi-user massive MIMO transmission with downlink training and pilot contamination precoding, " to appear on IEEE Trans. Veh. Technol., 2015.
  11. M. Sadeghi, C. Yuen, and Y. H. Chew, "Sum rate maximization for uplink distributed massive MIMO systems with limited backhaul capacity," in Proc. Globecom Workshops pp. 308-313, Dec. 2014.
  12. M. Sadeghi and C. Yuen, "Multi-cell multi-group massive MIMO multicasting: An asymptotic analysis" to appear in Proc. IEEE GLOBECOM pp.1-5, Dec. 2015.
  13. X.-J. Zhang et al., "Distributed power allocation for coordinated multipoint transmissions in distributed antenna systems," IEEE Trans. Wireless Commun., vol. 12, pp. 2281-2291, May 2013. https://doi.org/10.1109/TWC.2013.040213.120863
  14. D.-M. Wang et al., "Spectral efficiency of distributed MIMO systems," IEEE J. Sel. Areas Commun., vol. 31, pp. 2112-2127, Oct. 2013. https://doi.org/10.1109/JSAC.2013.131012
  15. J. Li, T. Luo, J. Gao, and G. Yue,"A MAC Protocol for Link Maintenance in Multichannel Cognitive Radio Ad Hoc Networks" J. Commun. Netw. KOR vol. 17, pp. 172-183, Apr. 2015. https://doi.org/10.1109/JCN.2015.000031
  16. C.-L. He, B. Sheng, P.-C. Zhu, X.-H. You, and G. Y. Li, "Energy- and spectral-efficiency tradeoff for distributed antenna systems with proportional fairness," IEEE J. Sel. Areas Commun., vol. 31, pp. 894-902, May 2013.
  17. R. Mahapatra, Y. Nijsure, G. Kaddoum, N. Ul Hassan, and C. Yuen, "Energy efficiency trade-off mechanism towards wireless green communication: A survey, " IEEE Commun. Surveys Tuts, vol. PP, no. 99, Oct 2015.
  18. C.-L. He, G. Y. Li, F.-C. Zheng, and X.-H. You, "Power allocation criteria for distributed antenna systems," IEEE Trans. Veh. Technol., vol. 64, no. 11, pp.1223-1231, Nov. 2015.
  19. C.-L. He, B. Sheng, P.-C. Zhu, D.-M. Wang, and X.-H. You, "Energy efficiency comparison between distributed MIMO and co-located MIMO systems," Int. J. Commun. Syst., vol. 27, pp. 81-94, 2014. https://doi.org/10.1002/dac.2345
  20. N. Deng, M. Zhao, J. Zhu, and W. Zhou, "Traffic-aware relay sleep control for joint macro-relay network energy efficiency" J. Commun. Netw. vol. 17, pp. 47-57, Feb. 2015. https://doi.org/10.1109/JCN.2015.000009
  21. Q. Sun et al., "On scheduling for massive distributed MIMO downlink," in Proc. IEEE GLOBECOM, pp. 4151-4156, Dec. 2013.
  22. W. Feng, Y.-M. Wang, N. Ge, J.-H. Lu, and J.-S. Zhang, "Virtual MIMO in multi-cell distributed antenna systems: Coordinated transmissions with large-scale CSIT," IEEE J. Sel. Areas Commun., vol. 31, pp. 2067-2081, Oct. 2013. https://doi.org/10.1109/JSAC.2013.131009
  23. A. M. Tulino and S. Verdu, "Random matrix theory and wireless communications," Found. Trends Commun. Inf. Theory, vol. 1, pp. 1-182, June 2004. https://doi.org/10.1561/0100000001
  24. L. Huang, J. Fang, K. Liu, H.C. So, and H. Li, "An eigenvalue-momentratio approach to blind spectrum sensing for cognitive radio under samplestarving environment," IEEE Trans. Veh. Technol., vol. 64, no. 8, pp. 3465- 3480, Aug. 2015. https://doi.org/10.1109/TVT.2014.2359217
  25. J. Zhang, C.-K. Wen, S. Jin, X.-Q. Gao, and K.-K. Wong, "On capacity of large-scale mimo multiple access channels with distributed sets of correlated antennas," IEEE J. Sel. Areas Commun., vol. 31, pp. 133-148, Feb. 2013. https://doi.org/10.1109/JSAC.2013.130203
  26. Cisco white paper. (2012). Cisco Visual Networking Index: Global mobile data traffic data forecast update, 2011-2016. [Online] Available: http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ visual-networking-index-vni/mobile-white-paper-c11-520862.html.
  27. H. Li, L.-Y. Song, and M. Debbah, "Energy efficiency of large-scale multiple antenna systems with transmit antenna selection," IEEE Trans. Commun., vol. 62, pp. 638-647, Feb. 2014. https://doi.org/10.1109/TCOMM.2014.011414.130498
  28. H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, "Energy and spectral efficiency of very large multiuser MIMO systems," IEEE Trans. Commun., vol. 61, pp. 1436-1449, Apr. 2013. https://doi.org/10.1109/TCOMM.2013.020413.110848
  29. S.-G. Cui, A. Goldsmith, and A. Bahai, "Energy-constrained modulation optimization," IEEE Trans. Wireless Commun., vol. 4, pp. 2349-2360, Sept. 2005. https://doi.org/10.1109/TWC.2005.853882
  30. W. Roh and A. Paulraj, "MIMO channel capacity for the distributed antenna," in Proc. IEEE VTC, vol. 2, pp. 706-709, Sept. 2002.
  31. C.-L. He, G. Y. Li, F.-C. Zheng, and X.-H. You, "Energy-efficient resource allocation in OFDM systems with distributed antennas," IEEE Trans. Veh. Technol., vol. 63, pp. 1223-1231, Mar. 2013.
  32. K. Nagayama, M. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, "Ultralow- loss (0.1484 db/km) pure silica core fibre and extension of transmission distance," Electron. Letters, vol. 38, pp. 1168-1169, Sept. 2002. https://doi.org/10.1049/el:20020824
  33. Feng D et al., "A survey of energy-efficient wireless communications, " IEEE Commun. Surveys Tuts., vol. 15, pp. 167-178, First Quarter 2013. https://doi.org/10.1109/SURV.2012.020212.00049
  34. J. Xu and L. Qiu, "Energy efficiency optimization for MIMO broadcast channels," IEEE Trans. Wireless Commun., vol. 12, pp. 690-701, Feb. 2013. https://doi.org/10.1109/TWC.2012.122212.120086
  35. Y. Rui, Q. T. Zhang, L. Deng, P. Cheng, and M.-Q. Li, "Mode selection and power optimization for energy efficiency in uplink virtual MIMO systems," IEEE J. Sel. Areas Commun., vol. 31, pp. 926-936, May 2013. https://doi.org/10.1109/JSAC.2013.130511
  36. G.-W. Miao, N. Himayat, G. Y. Li, and S. Talwar, "Distributed interference-aware energy-efficient power optimization," IEEE Trans. Wireless Commun., vol. 10, pp. 1323-1333, Apr. 2011. https://doi.org/10.1109/TWC.2011.021611.101376
  37. Y. Chen, S.-Q. Zhang, S.-G. Xu, and G. Y. Li, "Fundamental trade-offs on green wireless networks," IEEE Commun. Mag., vol. 49, pp. 30-37, June 2011.
  38. O. Arnold, F. Richter, G. Fettweis, and O. Blume, "Power consumption modeling of different base station types in heterogeneous cellular networks," in Proc. Future Netw. Mobile Summit, pp. 1-8, 2010.
  39. D. W. K. Ng, E. Lo, and R. Schober, "Wireless information and power transfer: Energy efficiency optimization in OFDMA systems," IEEE Trans. Wireless Commun., vol. 12, pp. 6352-6370, Dec. 2013. https://doi.org/10.1109/TWC.2013.103113.130470
  40. G. P. G. H. Hardy, J. E. Littlewood, Inequalities. Cambridge University Press: Cambridge, 1952.