DOI QR코드

DOI QR Code

Regulation of IgE-Mediated Food Allergy by IL-9 Producing Mucosal Mast Cells and Type 2 Innate Lymphoid Cells

  • Jee-Boong Lee (Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST)
  • 투고 : 2016.05.11
  • 심사 : 2016.08.08
  • 발행 : 2016.08.31

초록

Due to the increasing prevalence and number of life-threatening cases, food allergy has emerged as a major health concern. The classic immune response seen during food allergy is allergen-specific IgE sensitization and hypersensitivity reactions to foods occur in the effector phase with often severe and deleterious outcomes. Recent research has advanced understanding of the immunological mechanisms occurring during the effector phase of allergic reactions to ingested food. Therefore, this review will not only cover the mucosal immune system of the gastrointestinal tract and the immunological mechanisms underlying IgE-mediated food allergy, but will also introduce cells recently identified to have a role in the hypersensitivity reaction to food allergens. These include IL-9 producing mucosal mast cells (MMC9s) and type 2 innate lymphoid cells (ILC2s). The involvement of these cell types in potentiating the type 2 immune response and developing the anaphylactic response to food allergens will be discussed. In addition, it has become apparent that there is a collaboration between these cells that contributes to an individual's susceptibility to IgE-mediated food allergy.

키워드

참고문헌

  1. Johansson, S. G., T. Bieber, R. Dahl, P. S. Friedmann, B. Q. Lanier, R. F. Lockey, C. Motala, J. A. Ortega Martell, T. A. Platts-Mills, J. Ring, F. Thien, C. P. Van, and H. C. Williams. 2004. Revised nomenclature for allergy for global use: Report of the nomenclature review committee of the world allergy organization, October 2003. J. Allergy Clin. Immunol. 113: 832-836.  https://doi.org/10.1016/j.jaci.2003.12.591
  2. Platts-Mills, T. A. 2015. The allergy epidemics: 1870-2010. J. Allergy Clin. Immunol. 136: 3-13.  https://doi.org/10.1016/j.jaci.2015.03.048
  3. Sicherer, S. H. 2011. Epidemiology of food allergy. J. Allergy Clin. Immunol. 127: 594-602.  https://doi.org/10.1016/j.jaci.2010.11.044
  4. Sicherer, S. H., S. A. Noone, and A. Munoz-Furlong. 2001. The impact of childhood food allergy on quality of life. Ann. Allergy Asthma Immunol. 87: 461-464.  https://doi.org/10.1016/S1081-1206(10)62258-2
  5. Flokstra-de Blok, B. M., d. van, V, B. J. Vlieg-Boerstra, J. N. Oude Elberink, A. DunnGalvin, J. O. Hourihane, E. J. Duiverman, and A. E. Dubois. 2010. Health-related quality of life of food allergic patients measured with generic and disease-specific questionnaires. Allergy 65: 1031-1038.  https://doi.org/10.1111/j.1398-9995.2009.02304.x
  6. Lee, J. B., C. Y. Chen, B. Liu, L. Mugge, P. Angkasekwinai, V. Facchinetti, C. Dong, Y. J. Liu, M. E. Rothenberg, S. P. Hogan, F. D. Finkelman, and Y. H. Wang. 2016. IL-25 and CD4(+) TH2 cells enhance type 2 innate lymphoid cell-derived IL-13 production, which promotes IgE-mediated experimental food allergy. J. Allergy Clin. Immunol. 137: 1216-1225.  https://doi.org/10.1016/j.jaci.2015.09.019
  7. Chen, C. Y., J. B. Lee, B. Liu, S. Ohta, P. Y. Wang, A. V. Kartashov, L. Mugge, J. P. Abonia, A. Barski, K. Izuhara, M. E. Rothenberg, F. D. Finkelman, S. P. Hogan, and Y. H. Wang. 2015. Induction of interleukin-9-producing mucosal mast cells promotes susceptibility to IgE-mediated experimental food allergy. Immunity 43: 788-802.  https://doi.org/10.1016/j.immuni.2015.08.020
  8. Brandtzaeg, P. 1998. Development and basic mechanisms of human gut immunity. Nutr. Rev. 56: S5-18.  https://doi.org/10.1111/j.1753-4887.1998.tb01645.x
  9. Lozupone, C. A., J. I. Stombaugh, J. I. Gordon, J. K. Jansson, and R. Knight. 2012. Diversity, stability and resilience of the human gut microbiota. Nature 489: 220-230.  https://doi.org/10.1038/nature11550
  10. Turner, J. R. 2009. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 9: 799-809.  https://doi.org/10.1038/nri2653
  11. Nagler-Anderson, C. 2001. Man the barrier! Strategic defences in the intestinal mucosa. Nat. Rev. Immunol. 1: 59-67.  https://doi.org/10.1038/35095573
  12. Salzman, N. H., K. Hung, D. Haribhai, H. Chu, J. Karlsson-Sjoberg, E. Amir, P. Teggatz, M. Barman, M. Hayward, D. Eastwood, M. Stoel, Y. Zhou, E. Sodergren, G. M. Weinstock, C. L. Bevins, C. B. Williams, and N. A. Bos. 2010. Enteric defensins are essential regulators of intestinal microbial ecology. Nat. Immunol. 11: 76-83.  https://doi.org/10.1038/ni.1825
  13. Moog, F. 1981. The lining of the small intestine. Sci. Am. 245: 154-158, 160, 162.  https://doi.org/10.1038/scientificamerican1181-154
  14. CHASE, M. W. 1946. Inhibition of experimental drug allergy by prior feeding of the sensitizing agent. Proc. Soc. Exp. Biol. Med. 61: 257-259.  https://doi.org/10.3181/00379727-61-15294P
  15. Iweala, O. I., and C. R. Nagler. 2006. Immune privilege in the gut: the establishment and maintenance of non-responsiveness to dietary antigens and commensal flora. Immunol. Rev. 213: 82-100.  https://doi.org/10.1111/j.1600-065X.2006.00431.x
  16. Muraro, A., A. E. Dubois, A. DunnGalvin, J. O. Hourihane, N. W. de Jong, R. Meyer, S. S. Panesar, G. Roberts, S. Salvilla, A. Sheikh, A. Worth, and B. M. Flokstra-de Blok. 2014. EAACI Food allergy and anaphylaxis guidelines. Food allergy health-related quality of life measures. Allergy 69: 845-853.  https://doi.org/10.1111/all.12405
  17. Liu, T., S. Navarro, and A. L. Lopata. 2016. Current advances of murine models for food allergy. Mol. Immunol. 70: 104-117.  https://doi.org/10.1016/j.molimm.2015.11.011
  18. Brandt, E. B., R. T. Strait, D. Hershko, Q. Wang, E. E. Muntel, T. A. Scribner, N. Zimmermann, F. D. Finkelman, and M. E. Rothenberg. 2003. Mast cells are required for experimental oral allergen-induced diarrhea. J. Clin. Invest 112: 1666-1677.  https://doi.org/10.1172/JCI19785
  19. Elson, C. O., and W. Ealding. 1984. Cholera toxin feeding did not induce oral tolerance in mice and abrogated oral tolerance to an unrelated protein antigen. J. Immunol. 133: 2892-2897.  https://doi.org/10.4049/jimmunol.133.6.2892
  20. Kweon, M. N., M. Yamamoto, M. Kajiki, I. Takahashi, and H. Kiyono. 2000. Systemically derived large intestinal CD4(+) Th2 cells play a central role in STAT6-mediated allergic diarrhea. J. Clin. Invest 106: 199-206.  https://doi.org/10.1172/JCI8490
  21. Shimoda, K., D. J. van, M. Y. Sangster, S. R. Sarawar, R. T. Carson, R. A. Tripp, C. Chu, F. W. Quelle, T. Nosaka, D. A. Vignali, P. C. Doherty, G. Grosveld, W. E. Paul, and J. N. Ihle. 1996. Lack of IL-4-induced Th2 response and IgE class switching in mice with disrupted Stat6 gene. Nature 380: 630-633.  https://doi.org/10.1038/380630a0
  22. Forbes, E. E., K. Groschwitz, J. P. Abonia, E. B. Brandt, E. Cohen, C. Blanchard, R. Ahrens, L. Seidu, A. McKenzie, R. Strait, F. D. Finkelman, P. S. Foster, K. I. Matthaei, M. E. Rothenberg, and S. P. Hogan. 2008. IL-9- and mast cell-mediated intestinal permeability predisposes to oral antigen hypersensitivity. J. Exp. Med. 205: 897-913.  https://doi.org/10.1084/jem.20071046
  23. Metcalfe, D. D., R. D. Peavy, and A. M. Gilfillan. 2009. Mechanisms of mast cell signaling in anaphylaxis. J. Allergy Clin. Immunol. 124: 639-646.  https://doi.org/10.1016/j.jaci.2009.08.035
  24. Knol, E. F. 2006. Requirements for effective IgE cross-linking on mast cells and basophils. Mol. Nutr. Food Res. 50: 620-624.  https://doi.org/10.1002/mnfr.200500272
  25. Galli, S. J., and M. Tsai. 2012. IgE and mast cells in allergic disease. Nat. Med. 18: 693-704.  https://doi.org/10.1038/nm.2755
  26. Williams, L. W., and S. A. Bock. 1999. Skin testing and food challenges in allergy and immunology practice. Clin. Rev. Allergy Immunol. 17: 323-338.  https://doi.org/10.1007/BF02737614
  27. Wang, J., and H. A. Sampson. 2007. Food anaphylaxis. Clin. Exp. Allergy 37: 651-660.  https://doi.org/10.1111/j.1365-2222.2007.02682.x
  28. Rescigno, M., G. Rotta, B. Valzasina, and P. Ricciardi-Castagnoli. 2001. Dendritic cells shuttle microbes across gut epithelial monolayers. Immunobiology 204: 572-581.  https://doi.org/10.1078/0171-2985-00094
  29. Blanas, E., G. M. Davey, F. R. Carbone, and W. R. Heath. 2000. A bone marrow-derived APC in the gut-associated lymphoid tissue captures oral antigens and presents them to both CD4+ and CD8+ T cells. J. Immunol. 164: 2890-2896.  https://doi.org/10.4049/jimmunol.164.6.2890
  30. Huang, F. P., N. Platt, M. Wykes, J. R. Major, T. J. Powell, C. D. Jenkins, and G. G. MacPherson. 2000. A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. J. Exp. Med. 191: 435-444.  https://doi.org/10.1084/jem.191.3.435
  31. Martin, E., B. O'Sullivan, P. Low, and R. Thomas. 2003. Antigen-specific suppression of a primed immune response by dendritic cells mediated by regulatory T cells secreting interleukin-10. Immunity 18: 155-167.  https://doi.org/10.1016/S1074-7613(02)00503-4
  32. Kweon, M. N., K. Fujihashi, Y. Wakatsuki, T. Koga, M. Yamamoto, J. R. McGhee, and H. Kiyono. 1999. Mucosally induced systemic T cell unresponsiveness to ovalbumin requires CD40 ligand-CD40 interactions. J. Immunol. 162: 1904-1909.  https://doi.org/10.4049/jimmunol.162.4.1904
  33. Noval, R. M., O. T. Burton, P. Wise, L. M. Charbonnier, P. Georgiev, H. C. Oettgen, R. Rachid, and T. A. Chatila. 2015. Regulatory T cell reprogramming toward a Th2-cell-like lineage impairs oral tolerance and promotes food allergy. Immunity 42: 512-523.  https://doi.org/10.1016/j.immuni.2015.02.004
  34. Sakaguchi, S. 2005. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat. Immunol. 6: 345-352.  https://doi.org/10.1038/ni1178
  35. Fallon, P. G., S. J. Ballantyne, N. E. Mangan, J. L. Barlow, A. Dasvarma, D. R. Hewett, A. McIlgorm, H. E. Jolin, and A. N. McKenzie. 2006. Identification of an interleukin (IL)-25-dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion. J. Exp. Med. 203: 1105-1116.  https://doi.org/10.1084/jem.20051615
  36. Kim, B. S., M. C. Siracusa, S. A. Saenz, M. Noti, L. A. Monticelli, G. F. Sonnenberg, M. R. Hepworth, A. S. Van Voorhees, M. R. Comeau, and D. Artis. 2013. TSLP elicits IL-33-independent innate lymphoid cell responses to promote skin inflammation. Sci. Transl. Med. 5: 170ra16. 
  37. Salimi, M., J. L. Barlow, S. P. Saunders, L. Xue, D. Gutowska-Owsiak, X. Wang, L. C. Huang, D. Johnson, S. T. Scanlon, A. N. McKenzie, P. G. Fallon, and G. S. Ogg. 2013. A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis. J. Exp. Med. 210: 2939-2950.  https://doi.org/10.1084/jem.20130351
  38. Wang, Y. H., and Y. J. Liu. 2009. Thymic stromal lymphopoietin, OX40-ligand, and interleukin-25 in allergic responses. Clin. Exp. Allergy 39: 798-806.  https://doi.org/10.1111/j.1365-2222.2009.03241.x
  39. Wang, Q., J. Du, J. Zhu, X. Yang, and B. Zhou. 2015. Thymic stromal lymphopoietin signaling in CD4(+) T cells is required for TH2 memory. J. Allergy Clin. Immunol. 135: 781-791.  https://doi.org/10.1016/j.jaci.2014.09.015
  40. Iijima, K., T. Kobayashi, K. Hara, G. M. Kephart, S. F. Ziegler, A. N. McKenzie, and H. Kita. 2014. IL-33 and thymic stromal lymphopoietin mediate immune pathology in response to chronic airborne allergen exposure. J. Immunol. 193: 1549-1559.  https://doi.org/10.4049/jimmunol.1302984
  41. Saenz, S. A., M. C. Siracusa, J. G. Perrigoue, S. P. Spencer, J. F. Urban, Jr., J. E. Tocker, A. L. Budelsky, M. A. Kleinschek, R. A. Kastelein, T. Kambayashi, A. Bhandoola, and D. Artis. 2010. IL25 elicits a multipotent progenitor cell population that promotes T(H)2 cytokine responses. Nature 464: 1362-1366.  https://doi.org/10.1038/nature08901
  42. Owyang, A. M., C. Zaph, E. H. Wilson, K. J. Guild, T. McClanahan, H. R. Miller, D. J. Cua, M. Goldschmidt, C. A. Hunter, R. A. Kastelein, and D. Artis. 2006. Interleukin 25 regulates type 2 cytokine-dependent immunity and limits chronic inflammation in the gastrointestinal tract. J. Exp. Med. 203: 843-849.  https://doi.org/10.1084/jem.20051496
  43. Angkasekwinai, P., H. Park, Y. H. Wang, Y. H. Wang, S. H. Chang, D. B. Corry, Y. J. Liu, Z. Zhu, and C. Dong. 2007. Interleukin 25 promotes the initiation of proallergic type 2 responses. J. Exp. Med. 204: 1509-1517.  https://doi.org/10.1084/jem.20061675
  44. Muto, T., A. Fukuoka, K. Kabashima, S. F. Ziegler, K. Nakanishi, K. Matsushita, and T. Yoshimoto. 2014. The role of basophils and proallergic cytokines, TSLP and IL-33, in cutaneously sensitized food allergy. Int. Immunol. 26: 539-549.  https://doi.org/10.1093/intimm/dxu058
  45. McKenzie, G. J., C. L. Emson, S. E. Bell, S. Anderson, P. Fallon, G. Zurawski, R. Murray, R. Grencis, and A. N. McKenzie. 1998. Impaired development of Th2 cells in IL-13-deficient mice. Immunity 9: 423-432.  https://doi.org/10.1016/S1074-7613(00)80625-1
  46. Wu, D., R. Ahrens, H. Osterfeld, T. K. Noah, K. Groschwitz, P. S. Foster, K. A. Steinbrecher, M. E. Rothenberg, N. F. Shroyer, K. I. Matthaei, F. D. Finkelman, and S. P. Hogan. 2011. Interleukin-13 (IL-13)/IL-13 receptor alpha1 (IL-13Ralpha1) signaling regulates intestinal epithelial cystic fibrosis transmembrane conductance regulator channel-dependent Cl-secretion. J. Biol. Chem. 286: 13357-13369.  https://doi.org/10.1074/jbc.M110.214965
  47. Gurish, M. F., and K. F. Austen. 2012. Developmental origin and functional specialization of mast cell subsets. Immunity 37: 25-33.  https://doi.org/10.1016/j.immuni.2012.07.003
  48. Osterfeld, H., R. Ahrens, R. Strait, F. D. Finkelman, J. C. Renauld, and S. P. Hogan. 2010. Differential roles for the IL-9/IL-9 receptor alpha-chain pathway in systemic and oral antigen-induced anaphylaxis. J. Allergy Clin. Immunol. 125: 469-476.  https://doi.org/10.1016/j.jaci.2009.09.054
  49. Ahrens, R., H. Osterfeld, D. Wu, C. Y. Chen, M. Arumugam, K. Groschwitz, R. Strait, Y. H. Wang, F. D. Finkelman, and S. P. Hogan. 2012. Intestinal mast cell levels control severity of oral antigen-induced anaphylaxis in mice. Am. J. Pathol. 180: 1535-1546.  https://doi.org/10.1016/j.ajpath.2011.12.036
  50. Steenwinckel, V., J. Louahed, M. M. Lemaire, C. Sommereyns, G. Warnier, A. McKenzie, F. Brombacher, S. J. Van, and J. C. Renauld. 2009. IL-9 promotes IL-13-dependent paneth cell hyperplasia and up-regulation of innate immunity mediators in intestinal mucosa. J. Immunol. 182: 4737-4743.  https://doi.org/10.4049/jimmunol.0801941
  51. Brough, H. A., D. J. Cousins, A. Munteanu, Y. F. Wong, A. Sudra, K. Makinson, A. C. Stephens, M. Arno, L. Ciortuz, G. Lack, and V. Turcanu. 2014. IL-9 is a key component of memory TH cell peanut-specific responses from children with peanut allergy. J. Allergy Clin. Immunol. 134: 1329-1338.  https://doi.org/10.1016/j.jaci.2014.06.032
  52. Veldhoen, M., C. Uyttenhove, S. J. van, H. Helmby, A. Westendorf, J. Buer, B. Martin, C. Wilhelm, and B. Stockinger. 2008. Transforming growth factor-beta 'reprograms' the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat. Immunol. 9: 1341-1346.  https://doi.org/10.1038/ni.1659
  53. Stassen, M., M. Arnold, L. Hultner, C. Muller, C. Neudorfl, T. Reineke, and E. Schmitt. 2000. Murine bone marrow-derived mast cells as potent producers of IL-9: costimulatory function of IL-10 and kit ligand in the presence of IL-1. J. Immunol. 164: 5549-5555.  https://doi.org/10.4049/jimmunol.164.11.5549
  54. Shimbara, A., P. Christodoulopoulos, A. Soussi-Gounni, R. Olivenstein, Y. Nakamura, R. C. Levitt, N. C. Nicolaides, K. J. Holroyd, A. Tsicopoulos, J. J. Lafitte, B. Wallaert, and Q. A. Hamid. 2000. IL-9 and its receptor in allergic and nonallergic lung disease: increased expression in asthma. J. Allergy Clin. Immunol. 105: 108-115.  https://doi.org/10.1016/S0091-6749(00)90185-4
  55. Abdelilah, S., K. Latifa, N. Esra, L. Cameron, L. Bouchaib, N. Nicolaides, R. Levitt, and Q. Hamid. 2001. Functional expression of IL-9 receptor by human neutrophils from asthmatic donors: role in IL-8 release. J. Immunol. 166: 2768-2774.  https://doi.org/10.4049/jimmunol.166.4.2768
  56. Barlow, J. L., and A. N. McKenzie. 2014. Type-2 innate lymphoid cells in human allergic disease. Curr. Opin. Allergy Clin. Immunol. 14: 397-403. https://doi.org/10.1097/ACI.0000000000000090